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Abstract— In this paper, we present a cable mechanism which synthesizes a nonlinear rotational spring
from a linear spring. The nonlinearity is realized by winding the cable around a spool which has a varying
radius. We show that for a given nonlinear torque profile (synthesis objective) there is an explicit geometric
expression of the shape of the spool which synthesizes this profile. We present the geometry of the problem,
explain the method to calculate the shape of the spool, and show an example of synthesis.

Key Words: nonlinear spring, cable-spool system, profile synthesis

1. Introduction

The motion of a robotic system emerges through

the interaction of the control system, the mechani-

cal system, and the environment. Although mechan-

ical synthesis and control theory where traditionally

two distinct fields of study, recent research in robotic

engineering aim at considering both the control sys-

tem and the mechanical system as design parameters

to generate the motion [1, 2, 3]. In this paradigm,

the robot’s motion should result as much as possible

from the natural dynamics of the mechanism, in order

to realize smooth, natural and low-energy consuming

movements.

One of the key design parameters of such systems

is the stiffness of the joint angles. On one hand, high

stiffness is required to achieve an accurate and high

speed motion of the robot. On the other hand, soft-

ness is required to ensure a smooth and safe inter-

action with the environment. Therefore, we need to

synthesize a mechanism with nonlinear stiffness pro-

files. This can be achieved either by finite-Degree Of

Freedom (DOF) methods, which consist in optimizing

a finite number of parameters of the mechanism [4],

or infinite-DOF methods, which perform a continuous

calculation of the mechanism. Examples of infinite-

DOF methods are cam mechanisms, rolamite springs

[5], and mechanism with bearings rolling of a curved

frame [6].

In this paper, we present a method to synthesize

a nonlinear rotational spring from a linear spring us-

ing a cable mechanism. The cable, connected to the

linear spring, is wound around a non-circular spool as

shown of Fig. 1. When the spool rotates, the distance

from the spool axis to the tangency point of the cable

is modified, thus modifying the speed at which the

spring is displaced. This results in a nonlinear rela-

tionship between the angle of the spool and the torque

applied by the spring. Depending on the shape of the

spool, various stiffness profiles can be realized. This

paper is organized as follows: Section 2. presents the

mechanism, the notations and defines the synthesis

objective. Section 3. explains the calculation method

of the spool. Section 4. shows an example of synthe-

sis and explains the method used to verify the torque

function realized by the mechanism.

Fig.1 Mechanism with a varying radius cable spool

2. Varying radius cable spool

We consider the mechanism shown in Fig. 1. A lin-

ear spring is connected to a cable which goes trough

a pulley P and is wound around a non-circular spool.

We note O the axis of the spool, θs the angular posi-

tion of the spool with respect to the reference frame

and q the displacement of the linear spring with re-

spect to its natural length. Because the spool is not

circular, the torque τ created in O by the tension of

the cable is a nonlinear function of θs. In this pa-

per, we propose a method to compute the shape of

the spool which synthesizes a given nonlinear torque

profile τ(θs).

Fig. 2 shows the details of the spool. We note P the

pulley and T the point where the cable is tangent to

the spool. We note lspool the length of cable wound

around the spool, l the length TP and lspring the

length of cable from the pulley to the spring. The

total length of cable in the mechanism is noted L. By

definition, L = lspool+l+lspring. We note r = OT the

varying radius of the spool and R the distance OP . In

the coordinate frame attached to the spool, we note θp
the angular position of the pulley and θr the angular

position of the varying radius r. Finally, we note α

the angle of TP with respect to the perpendicular to

OT .
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Fig.2 Details of the spool

As mentioned before, we want to calculate the shape

of the spool which synthesizes a given torque profile

τ(θs). Assuming that τ(θs) > 0, the Principe of Vir-

tual Work gives the following relationship:

− τ(θs) dθs = −k q dq (1)

where k is the spring constant of the linear spring.

Since this system has only one DOF, we can derive

the following relationship from Eq. (1):

dq

dθs
=

τ(θs)√
2 k
∫ θs
0
τ(u) du+ q20

(2)

where q20 is the value of q when θs = 0. dq
dθs

can be

written as:

dq

dθs
=

dq

dlspring

dlspring
dθp

dθp
dθs

(3)

lspring and θs satisfy the following relationships:

lspring + q = lspring,0 (4)

θs + θp = θp,0 (5)

where lspring,0 is the length of cable between the pul-

ley and the spring when it is at its natural length and

θp,0 is the angular position of the pulley when θs = 0.

From Eqs. (3), (4) and (5) we obtain the following

equation:
dq

dθs
=
dlspring
dθp

(6)

From now, we use the notation
dlspring
dθp

= J(θp). Us-

ing Eqs. (2) and (6), we can calculate J(θp) as:

J(θp) =
τ(θp,0 − θp)√

2 k
∫ (θp,0−θp)
0

τ(u) du+ q20

(7)

J(θp) defines the input/output relationship that the

spool must achieve to synthesize the torque profile

τ(θs).

3. Calculus method

Considering that the kinematic input of the spool is

θp, the output lspring, and the objective input/output

relationship J(θp), we need to determine the relation-

ships between θp and r and between θp and θr to

calculate the shape of the spool. The spool boundary

is constrained by two geometric conditions: the first

one is the tangency of the cable to the spool in T , the

second one is the conservation of the total length of

cable in the system L.

The tangency condition of the cable in T imposes

the following condition:

dr

dθr
= −r tanα (8)

For later use, we give the expression of α.

cosα =
R

l
sin(θr − θp) (9)

sinα =
R

l
cos(θr − θp)−

r

l
(10)

tanα =
R cos(θr − θp)− r
R sin(θr − θp)

(11)

We now write the conservation of the total length

L of the cable .

dL

dθp
=
dlspool
dθp

+
dl

dθp
+
dlspring
dθp

= 0 (12)

We detail the calculation of the three terms of this

equation.

First term:

We write
dlspool
dθp

as:

dlspool
dθp

=
dlspool
dθr

dθr
dθp

(13)

We consider the displacement of the tangency point

T for a small variation of θr, as shown in Fig. 3. From

the law of cosines, the length δl is given by:

δl2 = (r(θr))
2+(r(θr+δθr))

2−2r(θr)r(θr+δθr) cos(δθr)

(14)

We calculate the second order Taylor expansion of this

expression. After simplifications, we obtain:

δl2 =

((
dr

dθr

)2

+ r2

)
δθ2r +O

(
(δθr)

3
)

(15)

By substituting (8) in (15), we obtain:

δl2 =
r2

cos2(α)
δθ2r +O

(
δθ3r
)

(16)

From equation (16),
dlspool
dθr

is given by:

dlspool
dθr

= − lim
δθr→0

δl

δθr
= − r

cosα
(17)
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Fig.3 Small variation of lspool

Finaly, the expression of
dlspool
dθp

is

dlspool
dθp

= − r

cosα

dθr
dθp

(18)

Second term:

From the law of cosines applied to the triangle

POT , the expression of l is:

l =
√
R2 + r2 − 2Rr cos(θr − θp) (19)

The partial derivatives of l with respect to r, θr and

θp are:

∂l

∂θr
=
Rr sin(θr − θp)

l
(20)

∂l

∂r
=
r −R cos(θr − θp)

l
(21)

∂l

∂θp
= −Rr sin(θr − θp)

l
(22)

The total derivative of l with respect to θp is:

dl

dθp
=

∂l

∂θr

dθr
dθp

+
∂l

∂r

dr

dθp
+

∂l

∂θp
(23)

Using Eqs. (9), (11), (19), (20), (21), (22), (23) and

(8), we obtain:

dl

dθp
=

r

cos(α)

dθr
dθp
− Rr

l
sin(θr − θp) (24)

Third term:

As explained in the previous section, we defined

J(θp) (which can be calculated by Eq. (7)) as:

dlspring
dθp

= J(θp) (25)

By substituting Eqs. (18), (24) and (25) in (12), we

obtain the following equation:

Rr

l
sin(θr − θp) = J(θp) (26)

This is a first geometric equation linking r, θr and θp.

By taking the square of this equation, calculating

the total derivative with respect to θp and combining

with Eq. (8), we obtain a second geometric equation.

Because of space limitation, we spare the details of

the calculus.

R2 r2

l4
sin(θr − θp)

∗
[
cos(θr − θp) (R2 + r2)− (1 + cos2(θr − θp))Rr

]
+ J(θp) J

′(θp) = 0 (27)

where J ′(θp) =
dJ(θp)
dθp

For a given set of θp, the spool boundary is de-

fined by the set of (r, θr) solutions of the system {(26),

(27)}. We now solve this system to find the explicit

solution. First, we solve Eq. (26) and write θr as a

function of θp and r.

θr=θp+

arccos

(
J2(θp)

Rr

(
1±

√(
1−
(

r
J(θp)

)2
)(

1−
(

R
J(θp)

)2
)))

(28)

The ± sign in the above equation comes from the

resolution of a second order equation (which gives two

solutions). Using Eqs. (10) and (28) we can prove

that the quantity below the square root is null if and

only if sinα = 0. Thus, when calculating the spool

boundary, the symbol ± has to be changed from +

to − (or the opposite) each time that α = 0 occurs

to ensure that dα
dθp

is continuous. We now substitute

this expression in Eq. (27) and solve the equation to

obtain the explicit expression of r with respect to θp.

r(θp) =

√√√√J2(θp) +
J ′2(θp) (R2 − J2(θp))(

J ′(θp)∓
√
R2 − J2(θp)

)2
(29)

Eqs. (28) and (29) define the explicit solution of the

spool boundary for a given function J(θp). Note that

for a single function J(θp) the system has two solu-

tions, distinguished by the ∓ sign in Eq. (29). The

reason to the existence of two distinct solutions is that

the spool has always two tangents passing through the

pulley.

An important remark is that a necessary condi-

tion so that the system {(26),(27)} has a solution

is J(θp) ≤ R. Under this condition, the radius of

the spool verifies the relationship J(θp) ≤ r(θp) ≤ R.

Furthermore, since the tension in the cable must stay

positive, the objective torque profile τ(θs) must be

strictly positive.

4. Verification of calculus method
Using equations (29) and (28), we compute the

shape of the spool realizing a nonlinear torque pro-

file. Fig. 4 shows the shape of the spool. The red

circle, which diameter is R, shows the outer limit of

the domain inside of which r can vary. Fig. 5 shows

the value of the radius r with respect to θp.

To verify the accuracy of the synthesis, we use a nu-

meric method to find the tangency point T for each
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Fig.4 Spool synthesizing the torque profile

Fig.5 Varying radius r with respect to θp

angular position of the spool θs. From the coordinates

of T , we obtain the values of r and θr, then calculate

the values of l and α. Without loss of generality, we

assume that cable is attached to the spool at the an-

gular position θr,max (greatest element of (θr,i)i). We

calculate lspool by summing the lengths of the seg-

ments of the spool boundary from θr to θr,max . By

subtracting l and lspool from L (which is constant),

we get the value of lspring. From lspring, we know the

displacement of the linear spring and thus the tension

of the cable. With the angle α calculated before, we

compute the torque created by the cable on the spool

axis.

The comparison of the theoretical torque (solid line)

and synthesized torque (x-mark line) is shown on Fig.

6. Fig. 6 shows that the torque profile computed

numerically fits the theoretical torque profile. These

results show that from a given torque profile τ(θs),

we can calculate the shape of the cable spool which

synthesizes this torque profile.

5. Conclusion

In this paper, we proposed a cable mechanism which

uses a varying radius spool to synthesize a nonlinear

rotational spring from a linear spring. We explained

the methodology to compute the shape of the spool

Fig.6 Torque with respect to θs

and showed that the synthesis problem has an explicit

geometric solution, that is, for a given torque profile

τ(θs), there is an explicit expression of the shape of

the spool which realizes this function. We presented

an exemple of synthesis of a nonlinear torque profile.

Future work will include experiments of the cable

system and further theoretical study.
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