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Abstract To introduce a passive compliant mechanism for robot joints is an effective way
for impact absorption. However, because robot joints also require high torque transmission
characteristic, the simultaneous implementation of stiffness and softness is a significant issue.
In this paper, we develop a torque transmission mechanism with nonlinear passive stiffness
that realizes from zero to extremely high stiffness using mechanical singularity. The analysis
of nonlinearity of the stiffness is established and the experimental evaluations are shown. A
four-legged robot with the proposed mechanism is designed and the effectiveness of high
nonlinearity of the proposed mechanism is shown by landing and walking simulation.

1 Introduction

In the robot control, the impact force damages to the robot body and its environments, this causes
a breakage of members, failure of control system and hurt of people. From flexibility and safety
points of view, to introduce softness to robot members or joints gives an effective solution.

For the realization of a soft robot, (1) active compliance(Paul and Shimano, 1976; Hanafusa
and Asada, 1978; Hogan, 1980; Salisbury, 1980; Hogan), (2) passive compliance, and (3) pro-
grammable passive compliance(L-Kovitz et al., 1991; Morita et al., 1999; Okada et al., 2001;
Yamaguchi et al., 1998) are proposed so far. The active compliance does not completely realize
softness in high frequency (for impact force) because of the low frequency response of actuators
and/or sensors. The programmable passive compliance requires the additional actuator and it
increases the weight and volume of the robot. On the other hand, passive compliance is simple
and effective for softness of the robots. Because robots also require high torque transmission for
task executions, the simultaneous realization of stiffness and softness is an important issue, and
highly nonlinear stiffness will give us an effective solution. In this paper, we develop a nonlinear
passive stiffness mechanism by using the nonlinearity of mechanism. This mechanism realizes
(a) zero-stiffness using mechanical singularity and (2) high nonlinearity of passive stiffness. A
four-legged robot with the proposed mechanism is designed and the effectiveness of high non-
linearity of the proposed mechanism is shown by walking simulation.

2 Zero-stiffness using mechanical singularity

2.1 Mechanism
Joints and links configuration of the proposed mechanism is shown in figure 1-(a). The

rotational axes of joints R1 ∼ R5 are set along with z, x, x, z and z-axis respectively. Their
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rotation angles are defined by θ1 ∼ θ4 and φ . Figure 1-(b) shows the cross-section drawing of
the prototype. The input torque τin that works Disk Din is transmitted to τout on Disk Dout through
Link L. Roller bearings are used for R2 and R3, ball bearings are used for other joints. To reduce
the influence of backlash, pre-tension is added to link L by tightening the screw in S.
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Figure 1. Joints and links configuration and cross-section view of the proposed mechanism

2.2 Zero-stiffness analysis based on null space of Jacobian matrix of constraints
In generally, the degree-of-freedom (DOF) F of a 3D mechanism is calculated by F = 6(n−

1)−∑i(6− i)ni, where n means the number of links and ni means the summation of the number
of i-DOF revolute pairs. The DOF of the proposed mechanism Fp is calculated by Fp = 6(5−
1)− (6− 1)5 = −1. Because � = L1 − 2L2 yields the dependency of the constraints, we obtain
Fp = 0, which means this mechanism does not move from mechanical DOF point of view. On the
other hand, consider the constraints of this mechanism. By considering the closed loop of A→
B→ C→ D→ A, there are six independent constraints for position and orientation as follows.

f (θ1,θ2,θ3,θ4,φ) = 0 (2.1)
g(θ1,θ2,θ3,θ4,φ) = I3 (2.2)

where I3 means 3×3 identity matrix. Because it is clear that g ∈ R3×3 is an orthogonal matrix,
equation (2.2) is equivalent to the condition so that the diagonal elements of g are equal to 1.
These constraints are satisfied when θi = 0, φ = 0. Consider the minimal change Δθi and Δφ .By
neglecting more than second order minimal value, f and g are approximated as follows.[

f (Θ + ΔΘ)
g(Θ + ΔΘ)

]
=
[

f (Θ)
g(Θ)

]
+ J(Θ)ΔΘ (2.3)

Θ =
[

θ1 θ2 θ3 θ4 φ
]T (2.4)

ΔΘ =
[

Δθ1 Δθ2 Δθ3 Δθ4 Δφ
]T (2.5)

J(Θ) =

⎡
⎢⎢⎣

∂ f
∂θ1

∂ f
∂θ2

∂ f
∂θ3

∂ f
∂θ4

∂ f
∂φ

∂g
∂θ1

∂g
∂θ2

∂g
∂θ3

∂g
∂θ4

∂g
∂φ

⎤
⎥⎥⎦ (2.6)

When the second term of the right-hand side in equation (2.3) is equal zero, Θ+ΔΘ also satisfies
the constraints (2.1) and (2.2), which means this mechanism can move to the direction of ΔΘ
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without any strain of members, that is to say stiffness of this mechanism is equivalent to zero to
the direction of ΔΘ. When the rank of J ∈ R6×5 is less than 5, non-zero ΔΘ exists, which comes
from the mechanical singularity. On the proposed mechanism, rank of J at Θ = 0 is calculated
as rank J = 3 (< 5) and the orthogonal bases of the null-space of J are obtained as

ΔΘ1 =
[ −0.71 0 0 0.71 0

]T (2.7)

ΔΘ2 =
[

0.33 −0.41 0.41 0.33 −0.66
]T (2.8)

Equation (2.7) means link L rotates around z axis. On the other hand, equation (2.8) means the
upper disk can rotates Δφ as shown in figure 2, which means this mechanism has zero-stiffness
on R5 axis when Θ = 0.

ΔΘ1 ΔΘ2

Figure 2. Rotation of mechanism on behalf of ΔΘi

3 Stiffness analysis of the mechanism

3.1 Prototype of the proposed mechanism
The rotation of Dout by φ yields nonlinear spring characteristic because of the elasticity of

link L. Figure 3 shows the prototype of the proposed mechanism and the twist motion of the
mechanism. In this section, only link L is assumed to be elastic.
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Figure 3. Prototype of the proposed mechanism and its twist motion

3.2 Force and momentum working on L

In this section, we consider the force and momentum that works to L. Assume that the length
of link L changes from � to �+λ due to the rotation by φ on R5 axis as shown in figure 4. Figure
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4-(b) shows the top view of figure 4-(a). One straight line passing through points B and C is
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Figure 4. Relationship between φ and �+ λ
uniquely decided and R1, R4 rotate so that R2, R3 axes are orthogonal to this line. The rotation
angles are represented by −θ1 = θ4 = (π −φ)/2. This result is derived from two parallelisms of
R1, R4 axes and R2, R3 axes. From these considerations, any momentum do not work but only
tension for the length direction works to link L with respect to the rotation by φ .

3.3 Calculation of stiffness
We calculate torsional stiffness Kφ on R5 axis of this mechanism. Kφ is defined by

Kφ (φ) =
dτ(φ)

dφ
(3.1)

where τ means the restorative force. This definition means the stiffness at φ in proximity.
The spring constant of link L for length direction is defined by KL (assuming to be a linear

spring). Assume that torsional torque τ on R5 axis yields rotation by φ and the length of link L
is changed from � to �+ λ . The accumulated kinetic energy E is represented by

E =
∫ φ

0
τ(φ) dφ =

∫ λ

0
KLλ dλ =

1
2

KLλ 2 (3.2)

The differential of E with respect to φ gives torque τ as follows.

dE
dφ

= τ(φ) = KLλ
dλ
dφ

(3.3)

The geometry shown in figure 4-(c) gives

2r2(1− cosφ)+ �2 = (�+ λ )2 (3.4)

by cosine formula and Pythagorean theorem, and λ is represented by

λ =
√

2r2(1− cosφ)+ �2 − � (3.5)

The differential of λ with respect to φ gives

dλ
dφ

=
r2 sinφ√

2r2(1− cosφ)+ �2
(3.6)
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Equations (3.3), (3.5) and (3.6) lead torque τ by the function of φ as follows.

τ(φ) = KL

(
r2 sinφ − �r2 sinφ

Lφ (φ)

)
, Lφ (φ) =

√
2r2(1− cosφ)+ �2 (3.7)

Stiffness Kφ is obtained from the differential of equation (3.7) with respect to φ as follow.

Kφ (φ) = KL

(
r2 cosφ − �r2 cosφ

Lφ (φ)
+

�r4 sin2 φ
L3

φ (φ)

)
(3.8)

The change of Kφ is shown in figure 5-(a). The horizontal axis shows φ (0∼180 [degree]). Link L
is assumed to be an 8[mm]×16[mm] square pole (material : A2017 aluminum alloy) with length
30[mm] and r = 16[mm], KL = 1.1× 108[N/m] are set. Though Kφ becomes a negative value
when φ is more than 113[degree], the direction of the restorative force does not change because
the accumulated energy E increases monotonically as shown in figure 5-(b).
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Figure 5. Stiffness and accumulated energy
Actually, the length of link L dose not change so much, and the area of φ = 0 ∼ 8[degree]

is zoom displayed in figure 5-(c). The point with circle means Yield Point of link L (with 0.1%
strain). In this point, φ is 4.81[degree] and Kφ is 256[Nm/rad], which is equivalent to the torsional
stiffness of duralumin cylinder with 7.5[mm] diameter and 30[mm] length. From this figure, it
is clear that the stiffness of this mechanism has large change according to φ and zero stiffness is
realized at φ = 0.

3.4 Experimental evaluation of nonlinear stiffness
The stiffness of the designed mechanism is measured by experiments. A torque-load by a

weight(0.010∼4.0[kg]) is added to this mechanism and the rotation angle φ is measured. We
design two types of the link L as shown in figure 6. One is a normal link without slits, another
is a spring link with slits. The results are shown in figure 7-(a). The relationship between torque
τ and rotation angle φ has high nonlinearity. Stiffness of the mechanism with each link is
calculated. The results are shown in figure 7-(b). The theoretical values are shown together. The
spring constant of each link is obtained from Finite Element Method (FEM). In both results, the
experimental results show lower stiffness than the theoretical values, which is because the strains
are caused also in the parts other than link L and backlash of the bearing is not small. These
results show the zero-stiffness at φ = 0 and high nonlinearity of the stiffness according to the
change of φ .
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Figure 6. Two types of designed link L
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Figure 7. Torque τ and stiffness Kφ with respect to rotation angle φ

4 Evaluation of the effectiveness of high nonlinear stiffness

4.1 Four-legged robot
A four-legged robot with the proposed mechanism on the knee joint is designed. Four-legged

robot requires (a) High softness to absorb the impact force on landing and (b) High stiffness to
support the body weight and to yield high power for motion.

Figure 8. Four-legged robot
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Figure 9. Robot motion on landing

Each leg has three degrees of freedom. Two DOF on the base (z-axis and x-axis) and one
on the knee (x-axis). 60[W] DC motor and 1:50 reduction gear are used for each joint. The
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size of this robot is about 350[mm](width)×450[mm](length)×450[mm](height) and the weight
is about 15[kg]. Figure 8 shows the photograph of the designed robot and knee joint with the
proposed mechanism. The proposed mechanism is indicated by circle.

4.2 Simulation for evaluation of the effectiveness of nonlinear stiffness
To evaluate the effectiveness of nonlinearity of the stiffness, we calculate the grounding force

in landing. As shown in figure 9, the robot falls form the height h and lands. Because of the body
weight M, the knee joints bends φ which yields the torque by the stiffness to support the body.
The reaction forces from the ground on landing are shown in figure 10-(a). We set h = 1[m],
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Figure 10. Reaction force on landing and robot motion
the length of the legs � = 0.2[m] and M = 5,10,15[kg]. The solid lines shows the results with
the proposed mechanism (nonlinear spring) on the knee joint. For comparison, the dashed line
shows when a linear torsional spring is used. The spring constant of the linear spring is set so
that the final value of x with linear spring is equal to that of with nonlinear spring when M =
5. The damping parameter of the knee joint is selected appropriately. Figure 10-(b) shows the
final positions of the robot. These results show that when the linear spring is used, the softness
is obtained because the rigid joints causes infinite number of F .

Figure 11 shows the walk motion of the robot with the rigid joint, with the linear spring and
with the nonlinear spring. These figures show as follows.
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Figure 11. Walk motion of the robot
1. When we use the linear spring, the body height through the motion becomes lower accord-

ing to the larger mass.
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2. When we use the nonlinear spring, the change of the body height is small in spite of the
increase of the body weight.

And we can conclude that the proposed mechanism realizes the high stiffness to support the body
weight and to transmit high power for motion.

5 Conclusions

In this paper, we develop a torque transmission mechanism with nonlinear passive stiffness. The
results of this paper are as follows.

• Based on mechanical singularity of the closed kinematic chain, zero-stiffness is realized.
• Zero-stiffness and nonlinear stiffness of the proposed mechanism are analyzed based on

the kinematic constraints and they are evaluated by the experiments.
• A four-legged robot is designed with the proposed mechanism on knee joint.
• The effectiveness of high nonlinear stiffness of the proposed mechanism is shown by the

landing and walking simulations.
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