非円形のケーブル・スプールを用いた非線形な回転ばねの設計

Design of a nonlinear rotational spring using a non-circular cable spool

○シュミット・ニコラ 岡田昌史(東工大)

*Nicolas SCHMIT and Masafumi OKADA (Tokyo Inst. of Tech.)

Abstract—In this paper we present a cable mechanism which realizes a nonlinear rotational spring from a linear translational spring. The spring is pulled by a cable wound around a non-circular spool rigidly attached to the joint. The non-circular shape of the spool induces a nonlinear relationship between its angular position and the torque created by the tension of the cable. Depending on the non-circular shape, various torque-angle relationships can be realized. We show that for a given nonlinear torque-angle relationship, there is a closed form solution of the spool which synthesizes this function. In a first part, we present the geometry of the problem then derive the methodology to calculate the shape of the spool to synthesize a prescribed torque-angle relationship. In a second part, we verify the design methodology by experiments with three different spools realizing a constant force spring, an exponential softening spring and a cubic polynomial spring.

Key Words: nonlinear spring, nonlinear stiffness, tendon-driven mechanism, mechanical synthesis

1. はじめに

これまでに多くの産業用ロボットは、剛体リンク系 と高減速比のギアから成る機構として設計されてきた. しかし、これらの関節はバックドライバビリティが低 いため、外界からの衝撃を吸収することが難しい.一 方,発展する研究分野である福祉・パワーアシスト・ リハビリテーションロボティクス、義手、歩行ロボッ トなどを考慮する場合,ばねのような弾性要素を有す る機構が必要となる. ばねは衝撃による負傷を予防す るだけでなく、運動エネルギーを弾性エネルギーとし てばねに蓄積できるため、省エネルギーな運動が可能 となる. その上, ロボットの最適設計を求める際, 非 線形剛性を含めると、より最適な設計を求めることが できると考えられる. その例として, 非線形剛性を有 する効果的な衝撃吸収ができる機構 [1]、衝撃の時に かかる力を制限する安全機構 [2],省エネルギーな二 足歩行ロボット [3] などが提案されている.

非線形剛性を実現するために、大きく分けて二つの 方法がある.一つは、弾性材料から非線形ばねを加工 することであり [4]、もう一つは線形ばねと非線形な伝 達機構を組み合わせることである.後者は長所として 一般的な線形ばねを用いること、短所として伝達機構 の占めるスペースと質量が大きいことが挙げられる. 非線形な伝動機構は、リンク機構 [5]、曲面を転がる ローラ機構 [6, 7]、カム機構 [8, 9]、回転ばねに挿入さ れる可変半径の案内軸を用いた機構 [10] などが挙げら れる.

本研究では、ワイヤ駆動によって非線形ばねを実現 するための、非円形のスプールを用いた機構の設計方 法を提案する.機構の幾何学的な関係から所望のトル ク特性を実現するための、スプール形状の厳密解を求 め、さらに、実験により所望の特性が得られることを 検証する.この機構は可動な部分が少ないため、設計 が容易だけでなく、慣性力による影響が少ないという 利点がある.

2. 非円形のスプールを用いたケーブル 機構

提案する機構を図1に示す.スプールは点Oによっ て関節の軸(図に示さない)に固定されている. \mathcal{R}_{ref} は絶対座標系, \mathcal{R}_{spool} はスプールに固定された座標系, Oはスプールの軸(同様に \mathcal{R}_{ref} と \mathcal{R}_{spool} の原点), θ_s は \mathcal{R}_{ref} に対する \mathcal{R}_{spool} の回転角度である.滑車Pは \mathcal{R}_{ref} のx軸上にあり,Oからの距離をR(>0)とする. Tはスプールにおけるケーブルの接触点, $\ell(=TP)$ は 接触点から滑車までの距離,r(=OT)はスプールの 可変半径, θ_r は \mathcal{R}_{spool} から見たrの角度, α はTに おける可変半径の法線とケーブルのなす角である.

スプールが回転するとケーブルを巻き,滑車を通し てばねを引っ張る.これにより,Oにトルク τ が発生 する.ただし、スプールが非円形であるため、 $\tau \ge \theta_s$ の間には非線形な関係がある.本研究における総合問 題は、所望のトルク特性からスプールの形状を求める ことである.形状の解を求める際、以下の前提条件を 考慮する.

- ケーブルは伸びない(剛性は無限大)
- 滑車の半径は零である
- ケーブルの半径は零である¹

また、 θ_s の原点の定義により $0 \le \theta_s \le \theta_{s,max}$ とする.

Fig.1 Transmission mechanism with a non-circular cable spool.

¹実際には、スプールを加工するとき、ケーブルの半径を切り取 りオフセットとして扱う.

3. スプールの総合

3.1 機構の幾何学

仮想仕事の原理により、以下の関係が導かれる.

$$\tau(\theta_s) \, d\theta_s = k \, q \, dq \tag{1}$$

qはばねの変位,kはばね定数である.ケーブルの張 力を必ず正とするために, $\tau(\theta_s) > 0 \ge q > 0$ を仮定 する.式(1)から,以下のようにJを定義する.

$$J(\theta_s) = \frac{dq}{d\theta_s} = \frac{\tau(\theta_s)}{\sqrt{2 k \int_0^{\theta_s} \tau(u) \, du + (k \, q_0)^2}} \qquad (2)$$

 q_0 は $\theta_s = 0$ のときのqの値である. *J*を用いて、力の総合問題を運動学の総合問題に変換する.

図1に示すように、スプールの輪郭を極座標を用いて $r(\theta_r)$ で表す.機構の入力を θ_s とすると、輪郭を求めるために $r \ge \theta_r \ge \theta_s$ を拘束する二つの条件が導かれる.

3·2 接触条件

図2に示す幾何学的な関係から,余弦定理を用いて 以下の式が導かれる.

$$(\delta a)^2 = (r(\theta_r))^2 + (r(\theta_r + \delta \theta_r))^2 - 2r(\theta_r)r(\theta_r + \delta \theta_r)\cos(\delta \theta_r)$$
(3)

$$r(\theta_r)^2 = (r(\theta_r + \delta\theta_r))^2 + (\delta a)^2 - 2r(\theta_r + \delta\theta_r)\delta a\cos\varphi$$
(4)

式 (3) を式 (4) に代入し, テイラー展開を用いて以下 の式が導かれる.

$$2r\left(\frac{dr}{d\theta_r} - \sqrt{\left(\frac{dr}{d\theta_r}\right)^2 + r^2}\cos\varphi\right) + \mathcal{O}\left(\delta\theta_r\right) = 0$$
(5)

$$\tan \alpha = -\frac{1}{r} \frac{dr}{d\theta_r} \tag{6}$$

が成り立つ.式(6)を接触式と呼ぶことにする.

Fig.2 Displacement of tangency point

3.3 全長が一定である条件

ケーブルの全長 L が一定であるため以下の拘束条件 が導かれる.

$$\frac{dL}{d\theta_s} = \frac{d\ell_{spool}}{d\theta_s} + \frac{d\ell}{d\theta_s} + \frac{d\ell_{spring}}{d\theta_s} = 0$$
(7)

 ℓ_{spool} はスプールに巻かれているケーブルの長さ, ℓ_{spring} は滑車からばねまでのケーブルの長さである. まず,式(6)を式(3)に代入し,テイラー展開により

$$(\delta a)^2 = \frac{r^2}{\cos^2(\alpha)} \,\delta\theta_r^2 + \mathcal{O}\left(\left(\delta\theta_r\right)^3\right) \tag{8}$$

が導かれる. また

$$\frac{d\ell_{spool}}{d\theta_r} = -\lim_{\delta\theta_r \to 0} \frac{\delta a}{\delta\theta_r} = -\frac{r}{\cos\alpha} \tag{9}$$

であるため

$$\frac{d\ell_{spool}}{d\theta_s} = -\frac{r}{\cos\alpha} \frac{d\theta_r}{d\theta_s} \tag{10}$$

が成り立つ.次に,余弦定理によりℓは以下の式で表 される.

$$\ell = \sqrt{R^2 + r^2 - 2Rr\,\cos(\theta_r + \theta_s)} \tag{11}$$

ℓの導関数を求め,式(6)を代入すると

$$\frac{d\ell}{d\theta_s} = \frac{r}{\cos(\alpha)} \frac{d\theta_r}{d\theta_s} + \frac{Rr}{\ell} \sin(\theta_r + \theta_s)$$
(12)

が導かれる.最後に、 $\ell_{spring} + q$ の長さが一定である ため、式(2)より、

$$\frac{d\ell_{spring}}{d\theta_s} = -\frac{dq}{d\theta_s} = -J(\theta_s) \tag{13}$$

が導かれる.

3·4 厳密解の導出

式 (10), (12) と (13) を式 (7) に代入し,以下の拘 束条件が成り立つ.

$$\frac{Rr}{\ell}\sin(\theta_r + \theta_s) = J(\theta_s) \tag{14}$$

これに式 (11) を代入し、両辺の 2 乗を取り、 θ_s に対 する導関数を求め、式 (6) を導入することで、以下の 二つ目の拘束条件が導かれる.

$$\frac{R^2 r^2}{\ell^4} \sin(\theta_r + \theta_s)$$

$$\cdot \left[\cos(\theta_r + \theta_s) \left(R^2 + r^2\right) - \left(1 + \cos^2(\theta_r + \theta_s)\right) R r\right]$$

$$= J(\theta_s) J'(\theta_s) \tag{15}$$

ただし, $J'(\theta_s) = \frac{dJ(\theta_s)}{d\theta_s}$ とする. θ_s の値を定めると, スプールの輪郭は連立方程式 (14) と (15)の解である. これから厳密解を導出する. $X = \cos(\theta_r + \theta_s)$ とす ると,式 (14) は式 (11) を用いて

$$R^{2}r^{2}X^{2} - 2RrJ^{2}X + (R^{2} + r^{2})J^{2} - R^{2}r^{2} = 0$$
(16)

と等価である. $0 < J \le r < R$ を仮定すると, Xの解は

$$X = \frac{RrJ^2 \pm \sqrt{\Delta}}{R^2 r^2}$$
(17)
$$\Delta = R^2 r^2 (R^2 - J^2) (r^2 - J^2)$$

である. したがって

$$\theta_r = -\theta_s + \arccos\left(\frac{J^2 \pm \sqrt{(r^2 - J^2) \left(R^2 - J^2\right)}}{Rr}\right) \quad (18)$$

が得られる.以下で説明するように,式(18)の±記 号はsgn(J')と等しい.

式(15)に式(11)と式(18)を代入すると、式(15)は

$$\frac{R^2 r^2 \sqrt{1 - \left(\frac{1}{Rr} (J^2 \pm \Lambda)\right)^2}}{\left(R^2 + r^2 - 2 R r \left(\frac{1}{Rr} (J^2 \pm \Lambda)\right)\right)^2} \\
\cdot \left(r \left(\frac{1}{Rr} (J^2 \pm \Lambda)\right) - R\right) \\
\cdot \left(r - R \left(\frac{1}{Rr} (J^2 \pm \Lambda)\right)\right) = J J' \quad (19)$$

と等価である.ここで、 $\Lambda = \sqrt{(r^2 - J^2)(R^2 - J^2)}$ である. $r^* = \sqrt{r^2 - J^2}$ と $R^* = \sqrt{R^2 - J^2}$ を定義すると、式 (19) は

$$\pm \frac{r^* R^*}{R^* \mp r^*} = J' \tag{20}$$

と等価である.ここで,r < Rであるため, $(R^* \mp r^*)$ は正である.したがって,式(20)と式(18)の±記号は sgn(J')と等しい.最後に,rの厳密解は

$$r = \sqrt{J^{2}(\theta_{s}) + \frac{J^{\prime 2}(\theta_{s}) \left(R^{2} - J^{2}(\theta_{s})\right)}{\left(J^{\prime}(\theta_{s}) + \sqrt{R^{2} - J^{2}(\theta_{s})}\right)^{2}}} \quad (21)$$

になる. 式 (18) と (21) から, スプールの輪郭 $r(\theta_r)$ を 求められる.

4. 実験による総合法の検証

4·1 実験装置

実験装置を図3に示す.ハンドルを用いて,ハーモ ニックギアの入力軸を回転させ,出力軸によってスプー ルの回転角度を与える.発生するトルクはスプールと ギアの間に設置されたトルクセンサで,スプールの角 度はハンドルに設置したスケールで測定する².線形 ばねのばね定数は137N/mであり,ばねの質量が影響 を与えないように,ばねは鉛直に配置されている.ス プールは厚さ8mmのアルミ板からワイヤカットで加 工した.設計した3枚のスプールを図4に示す.1枚 目は一定のトルクを,2枚目は指数関数のトルクを,3 枚目は3次多項式のトルクを実現する.なお,これら の所望のトルクを式(22),(23)と(24)に示す.また, θ_s の領域は[0,270]degree,滑車の直径は6mm,*R*は 130 mm とした.

Fig.3 Experimental device. The spring, placed vertically above the mechanism, is not shown in the picture.

Fig.4 Calculation of the spools. The blue circle on the right is the pulley.

$$\tau_1(\theta_s) = 2 \tag{22}$$

$$\tau_2(\theta_s) = 2\left(1 - e^{-\theta_s}\right) + 1 \tag{23}$$

$$\tau_3(\theta_s) = 0.21 \left(\theta_s - 0.75\pi\right) \left(\theta_s - 0.25\pi\right) \left(\theta_s - 1.25\pi\right) + 2.5$$
(24)

²ギアとセンサとカップリングの柔軟性によるねじれは、無視で きるほど小さいと考える.

4·2 実験結果

所望のトルク関数(青線)と実験で実現したトルク 関数 (x線) を図 5(a), 図 6(a) と図 7(a) に示す.機 構のヒステレシスを把握するため、トルクの測定を θ_s を0度から270度まで増大させ、その後0度まで減少 させて行った.また、重力の影響を除くため、 θ_s の各 位置におけるスプールの重さによる重力モーメントを 計算し³, そのモーメントをセンサで測定されたトル クから引いた.実現したトルク関数の誤差を図 5(b), 図 6(b) と図 7(b) に示す.総合したトルク関数の平均 誤差は約1.5% である. 図7(b)に示すように、誤差の 主たる原因はヒステレシスである(θ。が上る時のほう がトルクが大きい)が、そのヒステレシスは、滑車と スプールのシャフトに用いたベアリングにおける摩擦 力が原因だと考えられる. また, 図 6(b) から, θ_s と 関連する誤差も見える. その現象はばねの初期張力が 原因だと考えられる。

これらの結果は、指定された非線形トルク関数 $\tau(\theta_s)$ から良い精度でこのトルク関数を実現するスプールを、計算することができることを示している.

Fig.7 Cubic polynomial spring

5. おわりに

本研究では,非線形な回転ばねを実現するための, 非円形のスプールに基づくワイヤ駆動系の機構を提案

³重力モーメントは、スプールの質量と重心の位置の関数で求める.重心の位置は CAD ソフトウエアで予め計算した.

- した.以下に成果を示す.
- 機構の幾何学的な関係から、スプールとケーブルの接触角に関する関係式、および、ケーブルの長さが一定であるための、ケーブル長さとスプールの回転角の関係を導いた。
- 2. 上記2つの式を連立させ、所望のトルク特性が与 えられたときの、スプール半径の厳密解を導いた.
- 上記厳密解を用いて、スプールの回転角に対して
 (1)一定トルク、(2)指数関数のトルク、(3)3次多 項式のトルクを発生させるスプールを総合した.
- 4. 上記の3つのスプールを用いた試作機を設計し、 所望のトルクが発生されていることを実験によっ て検証した.この結果誤差は1.5%と小さかった が、実験装置にばねの初期張力を調整する機構を 設けることで精度が改善できると考えられる。

参考文献

- E. Suhir. Shock protection with a nonlinear spring. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, 18(2):430 –437, 06 1995.
- [2] Jung-Jun Park, Hwi-Su Kim, and Jae-Bok Song. Safe robot arm with safe joint mechanism using nonlinear spring system for collision safety. In Proc. IEEE International Conference on Robotics and Automation, pages 3371-3376, 5 2009.
- [3] J. Yamaguchi and A. Takanishi. Design of biped walking robots having antagonistic driven joints using nonlinear spring mechanism. In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 1, pages 251–259 vol.1, 9 1997.
- [4] Christine Vehar Jutte. Generalized Synthesis Methodology Of Nonlinear Springs For Prescribed Load-Displacement Functions. PhD thesis, University of Michigan, 2008.
- [5] M. Okada and J. Takeishi. Kineto-static mechanical synthesis for nonlinear property design of passive stiffness using closed kinematic chain. In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4213 –4218, 10 2010.
- [6] S.A. Migliore, E.A. Brown, and S.P. DeWeerth. Biologically inspired joint stiffness control. In Proc. IEEE International Conference on Robotics and Automation, pages 4508 – 4513, 4 2005.
- [7] S. Wolf and G. Hirzinger. A new variable stiffness design: Matching requirements of the next robot generation. In Proc. IEEE International Conference on Robotics and Automation, pages 1741 –1746, May 2008.
- [8] Jonathan W. Hurst, Joel Chestnutt, and Alfred Rizzi. An actuator with mechanically adjustable series compliance. Technical Report CMU-RI-TR-04-24, Robotics Institute, Pittsburgh, PA, 04 2004.
- [9] Krittanai Sajjapongse, Akihito Sano, Yoshito Ikemata, and Hideo Fujimoto. Development of humanlike foot based on lock-ball mechanism by considering roll-over shape. In Proc. The 28th Annual Conference of the Robotics Society of Japan, 09 2010. RSJ2010AC2D1-2.
- [10] K. Koganezawa. Mechanical stiffness control for antagonistically driven joints. In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1544 – 1551, 2005.