論 文

実験データに基づいた部分空間法による補償器の 低次元化*

岡田 昌史** · 杉江 俊治**

Subspace Controller Reduction based on Experimental Data*

Masafumi Okada** and Toshiharu Sugie**

This paper proposes a controller reduction method based on experimental data. In this method, using an appropriate subspace projection on the state-space sequence of the original controller, we obtain the reduced-order one. This method is applicable to unstable controllers and provides some indices by which we can determine the reduced order. Furthermore, we evaluate its effectiveness by experiment on an inverted pendulum system.

1. はじめに

制御系の設計において次数の小さな補償器を設計する ことは,信頼性やコストの面で重要な問題である.しか し,近年のロバスト制御の発達に伴い,補償器の次数は 増加の傾向にあり,そのため補償器の低次元化問題が重 要となっている.

従来の低次元化法は、開ループでその入出力関係がほ ぼ等しいような低次元化システムをもとめる、内部平衡 実現による BT 法 (平衡化打ち切り法)¹⁾や、ハンケルノ ルム近似法²⁾などがある.しかし、補償器は閉ループ系の 内部に組み込まれることが前提であることから、閉ルー プ特性を考慮した近似が必要となり、周波数重みを用い た低次元化法が提案されている^{3),4)}.しかし、この周波 数重みには制御対象の情報を用いるため、モデル化誤差 が存在する場合には望ましい結果が得られないことが考 えられる.また、これらの方法は安定なシステムにしか 適用できないため、不安定な補償器に対しては既約分解 した後に低次元化を施す方法も提案されている^{5),6)}.し かし、この場合には既約分解の際の極をどう選ぶか、周 波数重みをどう定めるかといった問題点が残る.

そこで本論文では、これまでとは全く異なった観点に

** 京都大学 工学部 Faculty of Engineering, Kyoto University; Uji, Kyoto 611, JAPAN 立ち,部分空間同定法^{7),8)}の立場から実験データを利用 した補償器の低次元化法を提案する.部分空間同定法で はシステムの次数を定める際に,ある行列の特異値の大 きさを基準に判断するため,モデル低次元化能力の可能 性を持つことが知られている⁹⁾.提案手法ではシステム 同定とは異なり,補償器の状態変数が利用可能であるこ とを陽に用い,この時系列データを集め,この中で出力 に対する影響が十分小さい状態を無視することにより低 次元化を行う.さらに,本設計法の有効性を従来法との 比較を含めた実験により検証する.

2. 低次元化問題

本論文では、Fig.1のような閉ループ系を考える.ここで、Pは制御対象、Kは補償器を表しており、 r_1, r_2 はある決まった外部入力である.また、Kはつぎのl入力m出力、n次元の線形時不変な離散時間状態空間表現

Fig. 1 Closed loop system

^{*} 原稿受付 1995年10月30日

Key Words: controller reduction, subspace method, experimental data, singular value decomposition, joint design of experiment and control

$$K: \begin{cases} \boldsymbol{x}[k+1] = \boldsymbol{A}\boldsymbol{x}[k] + \boldsymbol{B}\boldsymbol{y}[k], \\ \boldsymbol{u}[k] = \boldsymbol{C}\boldsymbol{x}[k] + \boldsymbol{D}\boldsymbol{y}[k], \\ \boldsymbol{x}[k] \in \boldsymbol{R}^{n}, \ \boldsymbol{u}[k] \in \boldsymbol{R}^{m}, \ \boldsymbol{y}[k] \in \boldsymbol{R}^{l} \\ \boldsymbol{A} \in \boldsymbol{R}^{n \times n}, \ \boldsymbol{B} \in \boldsymbol{R}^{n \times l}, \ \boldsymbol{C} \in \boldsymbol{R}^{m \times n}, \ \boldsymbol{D} \in \boldsymbol{R}^{m \times l} \end{cases}$$
(1)

で表せるものとし、これは可制御かつ可観測なシステム であるとする.また、補償器の状態x[k]はすべて観測可能 とする.このとき、本論文ではある特定の外部入力によっ てFig.1から定まるy[k] (k=1,2,...,N)に対して、u[k] と ほぼ同じ出力 $u_r[k]$ を持つp(<n)次元の補償器 K_r

$$K_r : \begin{cases} \boldsymbol{x}_r[k+1] = \boldsymbol{A}_r \boldsymbol{x}_r[k] + \boldsymbol{B}_r \boldsymbol{y}[k], \\ \boldsymbol{u}_r[k] = \boldsymbol{C}_r \boldsymbol{x}_r[k] + \boldsymbol{D} \boldsymbol{y}[k], \\ \boldsymbol{x}_r[k] \in \boldsymbol{R}^p, \, \boldsymbol{u}_r[k] \in \boldsymbol{R}^m \\ \boldsymbol{A}_r \in \boldsymbol{R}^{p \times p}, \, \boldsymbol{B}_r \in \boldsymbol{R}^{p \times l}, \, \boldsymbol{C}_r \in \boldsymbol{R}^{m \times p} \end{cases}$$
(2)

を実験データに基づいて求めることを考える.

3. 低次元化法

3.1 設計方針

2. の低次元化補償器 K_r を求めるためにつぎのような 方針を考える.まず, (1)式のシステムに対しつぎの行列 を定義する.

$$\boldsymbol{Y}^{(i)} := \begin{bmatrix} \boldsymbol{y}[i] & \boldsymbol{y}[i+1] & \dots & \boldsymbol{y}[N+i-1] \end{bmatrix}$$
(3)

$$\boldsymbol{U}^{(i)} := \left[\boldsymbol{u}[i] \ \boldsymbol{u}[i+1] \ \dots \ \boldsymbol{u}[N+i-1] \right]$$
(4)

$$\mathbf{X}^{(i)} := \left[\mathbf{x}[i] \ \mathbf{x}[i+1] \ \dots \ \mathbf{x}[N+i-1] \right]$$
(5)

また同様に (2) 式のシステムに対し, $X_r^{(i)}$, $U_r^{(i)}$ を定義 する.これらはすべて時系列データを並べた行列である. このとき、(1) 式より次式が成り立ち

$$\begin{cases} X^{(2)} = AX^{(1)} + BY^{(1)} \\ U^{(1)} = CX^{(1)} + DY^{(1)} \end{cases}$$
(6)

さらに,ある同値変換 $T(\in \mathbb{R}^{n \times n})$ により(6)式と次式は同値である.

$$\begin{cases} \widehat{\boldsymbol{X}}^{(2)} = \widehat{\boldsymbol{A}}\widehat{\boldsymbol{X}}^{(1)} + \widehat{\boldsymbol{B}}\boldsymbol{Y}^{(1)} \\ \boldsymbol{U}^{(1)} = \widehat{\boldsymbol{C}}\widehat{\boldsymbol{X}}^{(1)} + \boldsymbol{D}\boldsymbol{Y}^{(1)} \end{cases}$$
(7)

$$\widehat{\boldsymbol{X}}^{(i)} = \boldsymbol{T}^{-1} \boldsymbol{X}^{(i)} \tag{8}$$

$$\widehat{\boldsymbol{A}} = \boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T}, \ \widehat{\boldsymbol{B}} = \boldsymbol{T}^{-1} \boldsymbol{B}, \ \widehat{\boldsymbol{C}} = \boldsymbol{C} \boldsymbol{T}$$
(9)

また同様に、(2)式から次式が成り立つ.

$$\begin{cases} \boldsymbol{X}_{r}^{(2)} = \boldsymbol{A}_{r}\boldsymbol{X}_{r}^{(1)} + \boldsymbol{B}_{r}\boldsymbol{Y}^{(1)} \\ \boldsymbol{U}_{r}^{(1)} = \boldsymbol{C}_{r}\boldsymbol{X}_{r}^{(1)} + \boldsymbol{D}\boldsymbol{Y}^{(1)} \end{cases}$$
(10)

つぎに,どのような条件が満たされれば(10)式が(7) 式の良い近似となるのかについて考察する.まず,(1)式 の補償器に対して次式の記号を定義する.

$$\mathcal{U}^{j} := \begin{bmatrix} \mathbf{U}^{(1)} \\ \vdots \\ \mathbf{U}^{(j)} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{[1]} \cdots \mathbf{u}_{[N]} \\ \vdots & \vdots \\ \mathbf{u}_{[j]} \cdots \mathbf{u}_{[N+j-1]} \end{bmatrix}$$
(11)
$$\mathcal{Y}^{j} := \begin{bmatrix} \mathbf{Y}^{(1)} \\ \vdots \\ \mathbf{Y}^{(j)} \end{bmatrix} = \begin{bmatrix} \mathbf{y}_{[1]} \cdots \mathbf{y}_{[N]} \\ \vdots & \vdots \\ \mathbf{y}_{[j]} \cdots \mathbf{y}_{[N+j-1]} \end{bmatrix}$$
(12)

$$\Gamma^{j} := \begin{bmatrix} C \\ \widehat{C}\widehat{A} \\ \vdots \\ \widehat{C}\widehat{A}^{j-1} \end{bmatrix}$$
(13)

$$H^{j} := \begin{bmatrix} \boldsymbol{D} & \boldsymbol{0} \\ \hat{\boldsymbol{C}}\hat{\boldsymbol{B}} & \boldsymbol{D} \\ \vdots & \ddots \\ \hat{\boldsymbol{C}}\hat{\boldsymbol{A}}^{j-2}\hat{\boldsymbol{B}} & \hat{\boldsymbol{C}}\hat{\boldsymbol{A}}^{j-3}\hat{\boldsymbol{B}} & \cdots & \boldsymbol{D} \end{bmatrix}$$
(14)

 U^{i} , y^{j} はブロックハンケル行列, Γ^{j} は拡大可観測性行列, H^{j} はマルコフパラメータからなるブロックテプリッツ行 列である.また同様に, (2)式の補償器に対して $U^{j}_{r}, H^{j}_{r},$ Γ^{j}_{r} を定義する.このとき, (7), (10)式から,

$$\mathcal{U}^{j} - H^{j} \mathcal{Y}^{j} = \Gamma^{j} \widehat{\boldsymbol{X}}^{(1)} \tag{15}$$

$$\mathcal{U}_r^j - H_r^j \mathcal{Y}^j = \Gamma_r^j \boldsymbol{X}_r^{(1)} \tag{16}$$

が成り立つ. さて, ここで

$$\Gamma_r^j \boldsymbol{X}_r^{(1)} \simeq \Gamma^j \widehat{\boldsymbol{X}}^{(1)} \simeq \Gamma^j \left[\frac{\widehat{\boldsymbol{X}}_1^{(1)}}{0} \right]$$
(17)

$$\widehat{\boldsymbol{X}}^{(1)} =: \left[\frac{\widehat{\boldsymbol{X}}_1^{(1)}}{\widehat{\boldsymbol{X}}_2^{(1)}} \right], \quad \widehat{\boldsymbol{X}}_1^{(1)} \in \boldsymbol{R}^{p \times N}$$
(18)

が成り立つ場合を考える.このとき,(15)式と(16)式の 第 k列目に注目すると,

$$= \begin{bmatrix} u[k] - Dy[k] \\ u[k+1] - Dy[k+1] - \widehat{C}\widehat{B}y[k] \\ \vdots \\ u[k+j-1] - Dy[k+j-1] \\ -\widehat{C}\widehat{B}y[k+j-2] - \cdots - \widehat{C}\widehat{A}^{j-2}\widehat{B}y[k] \end{bmatrix}$$

$$= \begin{bmatrix} u_r[k] - Dy[k] \\ u_r[k+1] - Dy[k+1] - C_r B_r y[k] \\ \vdots \\ u_r[k+j-1] - Dy[k+j-1] \\ - C_r B_r y[k+j-2] - \cdots - C_r A_r^{j-2} B_r y[k] \end{bmatrix}$$

となる. (15), (16) 式は時系列行列で構成されているこ とを考慮すると,

$$\begin{cases}
\boldsymbol{u}[k] \simeq \boldsymbol{u}_{r}[k] \\
\hat{\boldsymbol{C}}\hat{\boldsymbol{B}}\boldsymbol{y}[k] \simeq \boldsymbol{C}_{r}\boldsymbol{B}_{r}\boldsymbol{y}[k] \\
\vdots \\
\hat{\boldsymbol{C}}\hat{\boldsymbol{A}}^{j-1}\hat{\boldsymbol{B}}\boldsymbol{y}[k] \simeq \boldsymbol{C}_{r}\boldsymbol{A}_{r}^{j-1}\boldsymbol{B}_{r}\boldsymbol{y}[k] \\
\vdots \\
(20)
\end{cases}$$

が成り立つ.ここで、 $u[k], u_r[k] (k=1,2,\dots,N)$ は

$$\begin{split} \boldsymbol{u}[k] = \widehat{\boldsymbol{C}} \widehat{\boldsymbol{A}}^{k-1} \widehat{\boldsymbol{x}}[1] + \widehat{\boldsymbol{C}} \widehat{\boldsymbol{A}}^{k-2} \widehat{\boldsymbol{B}} \boldsymbol{y}[1] + \dots + \boldsymbol{D} \boldsymbol{y}[k] \\ (\widehat{\boldsymbol{x}}[k] := \boldsymbol{T}^{-1} \boldsymbol{x}[k]) \quad (21) \end{split}$$

$$u_{r}[k] = C_{r} A_{r}^{k-1} x_{r}[1] + C_{r} A_{r}^{k-2} B_{r} y[1] + \dots + D y[k]$$
(22)

と書けるので,(20) 式から *j*が十分大きい場合には(10) 式は(7) 式の良い近似となり,(2) 式は(1) 式の低次元化 システムとなることが期待できる.

これらのことをまとめると,(17)式を満たす変換行列 **T**が存在すれば,(1)式は

$$\begin{cases} \left[\frac{\hat{x}_{1}[k+1]}{\hat{x}_{2}[k+1]}\right] = \left[\frac{\hat{A}_{11}}{\hat{A}_{21}}\right] \left[\frac{\hat{x}_{1}[k]}{\hat{x}_{2}[k]}\right] + \left[\frac{\hat{B}_{1}}{\hat{B}_{2}}\right] y[k] \\ (23) \\ u[k] = \left[\hat{C}_{1}\right] \hat{C}_{2}\right] \left[\frac{\hat{x}_{1}[k]}{\hat{x}_{2}[k]}\right] + Dy[k] \\ \hat{A} =: \left[\frac{\hat{A}_{11}}{\hat{A}_{22}}\right], \hat{B} =: \left[\frac{\hat{B}_{1}}{\hat{B}_{2}}\right] \qquad (24) \\ \hat{a} = \left[\hat{a}_{1}\hat{a}_{21}\right] \hat{A}_{22} = \left[\hat{a}_{21}\hat{a}_{22}\right] \hat{A}_{22} = \left[\hat{A}_{21}\hat{A}_{22}\hat{A}_{22}\right] \hat{A}_{22} = \left[\hat{A}_{21}\hat{A}_{22}\hat{A}_{22}\right] \hat{A}_{22} = \left[\hat{A}_{21}\hat{A}_{22}\hat{A}_{22}\right] \hat{A}_{22} = \left[\hat{A}_{21}\hat{A}_{22}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat{A}_{2}\hat$$

$$C := \left[\hat{C}_1 \middle| \hat{C}_2 \right] \tag{25}$$

$$\left\lfloor \frac{\boldsymbol{x}_1[k]}{\hat{\boldsymbol{x}}_2[k]} \right\rfloor =: \boldsymbol{T}\boldsymbol{x}[k], \ \hat{\boldsymbol{x}}_1[k] \in \boldsymbol{R}^p$$
(26)

と同値となり, さらに (17) 式から $\widehat{x}_2[k]$ は出力に対し影 響の小さい状態変数と考えられるので, これを無視し

$$\boldsymbol{A}_r = \widehat{\boldsymbol{A}}_{11}, \ \boldsymbol{B}_r = \widehat{\boldsymbol{B}}_1, \ \boldsymbol{C}_r = \widehat{\boldsymbol{C}}_1 \tag{27}$$

とすることで低次元化補償器 Krが得られる.

さてつぎに,(17)式の近似について考える. Γ^{j} は定義 から \hat{C} , \hat{A} によって定まる行列であり, $\Gamma^{j}\widehat{X}^{(1)}$ の各行ベ クトルの大きさには一般に大きなばらつきがある場合も 考えられる.そのため,適当な重み行列 L_1 , L_2 を考え,

$$\boldsymbol{L}_{1}\boldsymbol{\Gamma}_{r}^{j}\boldsymbol{X}_{r}^{(1)}\boldsymbol{L}_{2} \simeq \boldsymbol{L}_{1}\boldsymbol{\Gamma}^{j}\widehat{\boldsymbol{X}}^{(1)}\boldsymbol{L}_{2}$$

$$(28)$$

とすることが必要であると思われる.そこで本論文では, L_1 として $L_1\Gamma^{j}\widehat{X}^{(1)}$ の各行ベクトルのフロベニウスノル ムが1に規格化されるような重み行列を, L_2 には単位行

列を考えることにする.

3.2 設計法

つぎに設計手順を示す.まず,実験データから(5)式の ような $X^{(1)}$ を求める.ここで $X^{(1)} \in \mathbb{R}^{n \times N}$ であり,

$$\operatorname{rank} \boldsymbol{X}^{(1)} = n \tag{29}$$

を仮定する.また、Nは実験データの個数である.

<u>Step 1</u> A, C, X⁽¹⁾より十分大きな jを用いて次式の三 を求める.

$$\Xi := \begin{bmatrix} C \\ \vdots \\ CA^{j-1} \end{bmatrix} X^{(1)} \in \mathbf{R}^{jm \times N}$$
(30)

Step 2 上式の

三に対し、

$$\Xi_L := L\Xi \tag{31}$$

$$L = \operatorname{diag} \left\{ \|\xi_1\|^{-1} \cdots \|\xi_{jm}\|^{-1} \right\}$$
(32)

で与えられる.ただし, ξ_iは三の第 i 行ベクトル を, ||・|| はフロベニウスノルムを表す.

<u>Step 3</u> Ξ_L を次式のように特異値分解する.

$$\Xi_{L} = \begin{bmatrix} \mathbf{E} \\ * \end{bmatrix} \begin{bmatrix} \mathbf{S} \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{V}^{\mathrm{T}} \\ * \end{bmatrix}$$
$$= \mathbf{E} \mathbf{S} \mathbf{V}^{\mathrm{T}}, \qquad (33)$$
$$\mathbf{E} \in \mathbf{R}^{jm \times n}, \ \mathbf{V}^{\mathrm{T}} \in \mathbf{R}^{n \times N}$$
$$\mathbf{S} = \operatorname{diag} \{ \sigma_{1} \ \sigma_{2} \ \cdots \ \sigma_{n} \}$$

この式において

$$\begin{split} &\Xi_L = \boldsymbol{L} \Gamma^j \widehat{\boldsymbol{X}}^{(1)}, \ \Gamma^j := \boldsymbol{L}^{-1} \boldsymbol{E} \boldsymbol{S}, \\ &\widehat{\boldsymbol{X}}^{(1)} := \boldsymbol{V}^{\mathrm{T}} \end{split} \tag{34}$$

とする.これは

$$\boldsymbol{X}^{(1)} = \boldsymbol{T} \widehat{\boldsymbol{X}}^{(1)}, \ \boldsymbol{T} := \boldsymbol{X}^{(1)} \boldsymbol{V}$$
(35)

となる同値変換**T**を用いて(6)式を(7)式に変換 したことに相当する.ここで

$$\sigma_1 \ge \dots \ge \sigma_p \gg \sigma_{p+1} \ge \dots \ge \sigma_n \tag{36}$$

を仮定し,

$$\left[\frac{\widehat{\boldsymbol{X}}_{1}^{(1)}}{\widehat{\boldsymbol{X}}_{2}^{(1)}}\right] := \left[\frac{\boldsymbol{V}_{1}^{\mathrm{T}}}{\boldsymbol{V}_{2}^{\mathrm{T}}}\right] = \boldsymbol{V}^{\mathrm{T}}$$
(37)

$$\widehat{\boldsymbol{X}}_{1}^{(1)} \in \widehat{\boldsymbol{R}}^{p \times N} \tag{38}$$

とすると、(33)式が

$$\boldsymbol{ESV}^{\mathrm{T}} =: \boldsymbol{E} \begin{bmatrix} \boldsymbol{S}_{1} & \boldsymbol{0} \\ 0 & \boldsymbol{S}_{2} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_{1}^{\mathrm{T}} \\ \boldsymbol{V}_{2}^{\mathrm{T}} \end{bmatrix}$$
$$\simeq \boldsymbol{E} \begin{bmatrix} \boldsymbol{S}_{1} & \boldsymbol{0} \\ 0 & \boldsymbol{S}_{2} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_{1}^{\mathrm{T}} \\ 0 \end{bmatrix}$$
(39)

と近似できるのと同様に (34) 式は

$$\Xi_L \simeq L \Gamma^j \left[\frac{\widehat{\boldsymbol{X}}_1^{(1)}}{0} \right] \tag{40}$$

となるので,(35)式のTは(17)式の近似が可能 となる同値変換と考えられる.

 Step 4
 (35) 式のTと(9), (24)~(26) 式より低次元化補 償器 K_rは(27) 式によって得られる.

3.3 考察

3.3.1 従来法との関係

従来の低次元化法は、システムの入出力関係がほぼ等 しくなるようにするものが中心であるが、本設計法では ある特定の入力のみを考え、これに対する出力がほぼ等 しくなるように低次元化を行っている. そのため、ある 決まった外部入力による閉ループ系での補償器低次元化 に有効な方法である.また.低次元化の際には制御対象 Pの構造の情報を用いていない.そのため、制御対象の モデル化誤差に対してロバストな低次元化法となること が期待できる. さらに, 従来の低次元化法は不安定なシ ステムへの適用が困難であったため, 既約分解を用いる などの方法がとられているが、本手法はシステムの安定 性には依存しない方法となる.ただし,実験結果に基づ いた方法であるため外乱が存在する場合、あるいは外部 入力が異なる場合などに,得られる補償器の特性が変化 することは十分予想されることである.しかし,この影 響がどの程度の大きさを持つのかに関する考察を行うこ とは現段階では極めて困難であり、今後検証すべき課題 と考えられる.

また,一般に低次元化問題では補償器のある特性(例え ば積分特性)を保存したい場合がある.その際には本手法 でも従来法同様に,補償器を

 $K = \bar{K}_s \cdot K_s$ あるいは $K = \bar{K}_s + K_s$ (41) $K_s : 保存したい特性を含む部分$

に分けた後に*K*_sのみに低次元化を施すことで*K*_rを求め ることが可能であるが、もし、補償器の状態のうちどの 成分が保存したい特性に相当するのかを知ることができ れば、(28)式の*L*₂によって重みを付けることで可能にな ると思われる。

3.3.2 システム同定との関係

本手法では,(17)式のように $\Gamma^{j}\widehat{X}^{(1)}$ に基づいて低次元 化を行っているがこの意味について考察する.本論文で は(31)式の Ξ_L を(33)式のように特異値分解を行いこれ を(40)式で近似しているが,これは $\widehat{X}^{(1)} := V^{\mathrm{T}}$ で張ら れる空間を $\widehat{X}^{(1)}$ の部分空間に射影していることに相当す る.また,ここでは(36)式を仮定していることからもっ とも大きなp個の成分への射影となる.部分空間法を用 いた同定法(たとえば4SID法^{7),8)}では,(15)式に基づ き $\Gamma^{j}\widehat{X}$ の推定値を求め,このランクがシステムの次数と 等しくなることにより同定モデルの次数を定めるが,本 低次元化法でもこれと同様に補償器の次数を定めている.

3.3.3 jおよび pの決定法

(30) 式の jに関しては 4SID 法などの同定法と同様に大 きくとればシステムをより正確に評価しており, 望ましい 結果が得られることが期待される.しかし, jが大きけれ ばそれだけ大きな行列の特異値分解が必要となることか ら, jは計算機に依存した値となる.ただし, rank = nが成り立たなくてはならないため, jは最低 n 以上の値を とらなければならない.

また、本論文では低次元化補償器の次数pが与えられている状況から出発しているが、実際には (36)式の仮定から S_L の特異値が大幅に小さくなるところをもってpを定めることが適当と考えられる.

4. 数值例

つぎに,数値例による従来法との比較により本設計法 の有効性を検証し,また得られる補償器の構造について 考察を加える.ただし,ノイズ,モデル化誤差の影響は 考えないものとする.

4.1 制御対象の記述

4. では Fig.2のような倒立振子システムをもちいる. こ のシステムはモータの出力するトルクによって振子・ア ームの回転角度0, 6を制御するシステムであり, 1 入力

Fig. 2 Inverted pendulum system

2 出力のシステムである.参考として,アームの長さは 0.52[m],振子の長さは0.48[m],質量は0.135[kg]である. また,連続時間系での伝達関数は

$$P = \begin{bmatrix} \frac{-2.50s^2}{s(s+1.94)(s+5.69)(s-5.59)}\\ \frac{1.54(s+5.50)(s-5.50)}{s(s+1.94)(s+5.69)(s-5.59)} \end{bmatrix}$$
(42)

である.これにより補償器 Kは2入力1出力のシステム となる.なお,この装置のモデルの導出・パラメータの値 は参考文献9)に詳しい.本論文ではこのシステムに対し 次の条件でシミュレーションを行う.

- 外部入力:アームへのステップ目標値(=10°)
- サンプリングタイム:3[ms]
- 実験時間:3[s]
- データ数:1000[個]
- 4.2 低次元化

上述のシステムに対し, McFarlane らによって提案されている, ループ整形法に基づく H^{∞} 制御則¹¹⁾によって 補償器を設計した.このとき,補償器は適当な周波数重 みを用いることにより, 12次のものが得られた.このと きの補償器の極・零点を次式に示す.

$$K(s) =: \begin{bmatrix} K_1(s) & K_2(s) \end{bmatrix}$$
(43)
極: 0, 1.69, -0.30, -3.0, -9.08, -60.0,
-61.3, -100, -300, -329,
-119+122.9j, -119-122.9j
K₁の零点: 0, -325, -118+114j, -118-114j
K₂の零点: -0.30, -0.31, -1.14, -10.0, -54.0,
-60.0, -84.0, -100, -300, -300

一つの積分器を持ちしかも不安定な補償器となった.こ の補償器 Kをサンプリングタイムによって離散化したシ ステムに対し,本設計法を適用して3~7次の低次元化補 償器 K_{ri}^{pr} , (i=3,4,...,7)を求めた.ただし,(30)式の*j* は 30 とした.このとき,4~7次の低次元化補償器によっ て Pを安定化することが可能であった.つぎに,従来法 により同様に3~7次の補償器 K_{ri}^{BT} , (i=3,4,...,7)を求 めた.ただし,従来法としては参考文献6)に基づき,正 規化既約分解を用いた BT 法を用いた.このとき,5~7 次までの低次元化補償器によって Pを安定化することが 可能であった.このときの, $K, K_{r4}^{pr}, K_{r5}^{BT}$ を用いたとき の応答を Fig.3に示す.従来法による補償器は5次の補償 器であるのに対し,提案手法では4次であるにもかかわ らず元の補償器とほぼ同じ応答を示している.

4.3 考察

まず,補償器の構造について考察する.本手法は離散 時間領域での補償器の低次元化手法であるが,ここでは, 連続時間領域での物理システムを考え,これに基づいて

Fig. 3 Step responses (simulation)

はじめの補償器を設計しているので,得られた低次元化 補償器を連続時間システムに変換してその特性を評価す る.本設計法では低次元化に対する評価関数が存在しな いが,ある特定のyに対してu ~ u_rとなる出力を持つ低次 元化補償器を求めていることから,

$$\Phi_{u-u_r} = |K(j\omega) - K_r(j\omega)|\Phi_y \tag{44}$$

の特性を評価する.ここで、 Φ_{u-u_r} 、 Φ_y はそれぞれ $u-u_r$ 、yのパワースペクトルを、 $|K(j\omega) - K_r(j\omega)|$ は $K-K_r$ の連続時間周波数領域でのゲインを表す.また、ここでは外部入力としてアームに対するステップ目標値を考えていることから

$$\Phi_{y} = \left| [I + P(j\omega)K(j\omega)]^{-1} \begin{bmatrix} 0\\ \frac{1}{j\omega} \end{bmatrix} \right|$$
(45)

となる.4次と5次の補償器 $K_{r4}^{pr}, K_{r5}^{pr}, K_{r4}^{BT}, K_{r5}^{BT}$ を 用いたときの $\Phi_{u-u_{r4}}^{pr}, \Phi_{u-u_{r5}}^{pr}, \Phi_{u-u_{r4}}^{BT}, \Phi_{u-u_{r5}}^{BT}$ の特性 を Fig.4に示す.BT法に比べ提案手法はシミュレーション が有効となる帯域 (2.09~1047[rad/s]) で $\Phi_{u-u_{r}}$ が小さく なり,Kと K_{r} の差が小さくなっている様子が理解できる.

つぎに,詳細は略すがいくつかのシミュレーション結果 より得られた知見について述べる.低次元化補償器の次 数をある程度大きくとると従来法と提案手法においては 同様の閉ループ特性を示す補償器が得られる.しかし,参 照入力(目標値)をある特定の形に定め,より低次元化を 行うと顕著な差が現れる.また,提案手法によって得られ た補償器に対して異なった参照入力を用いたシミュレー ションをいくつか行ったが,閉ループ系の応答にあまり劣 化は見られなかった.これは提案手法が閉ループ特性を 反映した低次元化手法であることが一つの理由として考 えられるが,これについては今後詳細に検証すべき内容

Fig. 4 Gain plots of Φ_{u-u_r}

と思われる.

5. 実験

つぎに実験によって本設計法の有効性を検証する.制 御対象は4.と同等のものを用い,実験条件も同様のもの とした.ただし,モデル化誤差やノイズの影響が予想さ れる.提案法とBT法の両方を用いて低次元化補償器を 求めたところ,BT法では5次以上の補償器で安定化が 可能であったのに対し,提案法では4次以上の補償器で 安定化が可能であった.このときのK,K^{pr}_{r4},K^{BT}を用 いたときの応答をFig.5に示す.モデル化誤差やこの実験 レベルのノイズが存在する場合においても本設計法の有 効性が理解できる.

Fig. 5 Step responses (experiment)

6. おわりに

本論文では,従来とは異なった観点から,部分空間法に よる同定の概念より実験データを用いた低次元化法を提 案し,その有効性を従来法との比較を含めた実験によっ て検証した.とくに,提案手法では従来法に比べ補償器 の次数も小さくなり,応答の劣化も小さいような補償器 が得られた.なお,ここでは省略したが,提案法の有効 性は補償器が非最小位相システムなど様々な場合におい てシミュレーションで確認している.

参考文献

- B. C. Moore: Principal component analysis in linear systems : Controllability, observability and model reduction; *IEEE Trans.*, Vol. AC-37, No. 1, pp. 17–32 (1981)
- 2) K. Glover: All optimal Hankel-norm approximations of linear multivariable systems and their L_{∞} -error bounds; *Int. J. Control*, Vol. 39, No. 6, pp. 1115– 1193 (1984)
- D. F. Enns: Model reduction with balanced realization: An error bound and a frequency weighted generalization; *Proc. of 23rd CDC*, pp. 127–132 (1984)
- K. Zhou: Weighted optimal Hankel norm model reduction; Proc. of 32nd CDC, pp. 3353–3354 (1993)
- Y. Liu and B. D. O. Anderson: Controller reduction via stable factorization and balancing; *Int. J. Contr.*, Vol. 44, No. 2, pp. 507–531 (1986)
- D. G. Mayer: A fractional approach to model reduction; Proc. of ACC, pp. 1041–1047 (1988)
- 7) M. Moonen and B. De Moor: On- and off-line identification of linear state-space models; Int. J. Contr., Vol. 49, No. 1, pp. 219–232 (1989)
- 8) P. V. Overschee and B. De Moor: N4SID : Subspace algorithms for the identification of combined deterministic-stochastic system; *Automatica*, Vol. 30, No. 1, pp. 75–93 (1994)
- 9) M. Verhaegen and P. Dewilde: Subspace model identification part 2. Anlysis of the elementary output error state - space model identification; *Int. J. Contr.*, Vol. 56, No. 5, pp. 1211–1241 (1992)
- 杉江, 岡田: 並列倒立振子システムの H[∞]制御; システム制 御情報学会論文誌, Vol. 6, No. 12, pp. 543-551 (1993)
- D. C. McFarlane and K. Glover: Robust Controller Design Using Normalized Coprime Factor Plant Description, Lecture Notes in Control and Information Science, No. 138, Springer-Verlag (1990)