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Abstract— In this paper we present a cable mechanism which
realizes a nonlinear rotational spring from a linear translational
spring. The spring is pulled by a cable wound around a non-
circular spool, which is rigidly attached to the joint. The non-
circular shape of the spool induces a nonlinear relationship
between its angular position and the torque created by the
tension of the cable. Depending on the shape of the spool,
various torque profiles can be realized. We show that for a
given nonlinear torque profile, there is a closed-form solution
of the shape of the spool which synthesizes this function. In
a first part, we present the geometry of the problem. In a
second part, we derive the methodology to calculate the shape
of the spool to synthesize a prescribed torque profile. In the
last part, we verify the design methodology by experiments
with three different spools realizing a constant force spring, an
exponential softening spring and a cubic polynomial spring. We
discuss the possible sources of errors between the theoretical
and experimental results.

I. INTRODUCTION

Robotic devices used for industrial process are generally

designed with very stiff links and joints to ensure an accurate

and high speed positioning of the end-effector. However,

in the growing field of wearable robotics, rehabilitation

robotics, prosthetics, and walking robots, the implementation

of softness in robotic joints has become mandatory to match

the requirements of shock absorption, smooth interaction

with the user, and energy saving. Furthermore, when de-

signing a compliant joint as the solution of an optimization

problem, we could improve the performances of the system

if we do not restrain to linear stiffness. This is because

a nonlinear load-displacement function offers more design

parameters than a linear function, and because the space of

linear functions is a subspace of the space of continuous

functions.

Various applications, including (but not limited to)

robotics, can benefit from nonlinear stiffness. In shock ab-

sorption devices, a hardening spring can reduce the stopping

distance while a softening spring can be advisable when the

structural element to be protected is unable to withstand

high accelerations [1]. In manipulators, a nonlinear spring

mechanism can be implemented so that the stiffness of

the link drops abruptly if the external force exceeds a

critical force, thus guaranteeing the collision safety [2, 3]. In
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vibration damping, nonlinear springs can be used to create

a Nonlinear Energy Sink (NES) capable of absorbing steady

state vibration energy from the main system over a relatively

broad frequency range [4, 5]. Nonlinear stiffness also plays

a crucial role in running/hopping robots [6]. It can improve

the energy efficiency [7], and the stability [8] of the motion.

Finally, it is worth noticing several attempts to design simul-

taneously the control law and the mechanism of controlled

multibody systems as the solution of an optimization problem

[9, 10]. Although the methods presented in these last two

papers consider only linear stiffness, we could imagine an

extension to the design of nonlinear stiffness.

The implementation of nonlinear stiffness in a robotic

device can be mainly achieved by two ways. The first one

is to design a compliant element with a nonlinear load-

displacement function (nonlinear spring) [11, 12, 13, 14].

The second method is to connect a linear spring to a non-

linear transmission mechanism. This method has the benefit

of using an off-the-shelf linear spring, but the drawback of

the weight and size of the transmission mechanism. The

design of the transmission mechanism can be achieved by

optimizing the design parameters (length of links, etc.) of the

mechanism to minimize the error between the prescribed and

achieved load-displacement function [15]. A more accurate

but complicated strategy consists in a direct computation of

a part of the mechanism to synthesize exactly the prescribed

load-displacement function. The nonlinearity can result from

rollers moving on a curved surface [16, 17], cams [18, 19] or

from a varying radius shaft placed inside of a torsion spring

[20]. Some authors also proposed a mechanism where the

compliant element is replaced by torque-controlled actuators

[21].

In this paper we present a cable mechanism which realizes

a nonlinear rotational spring from a linear translational

spring. The cable, connected to the linear spring, is wound

around a non-circular spool as shown in Fig. 1. The non-

circular shape induces a nonlinear relationship between the

angular position of the spool and the torque created by the

tension of the cable at the spool’s axis. Depending on the

non-circular shape, various nonlinear torque profiles can be

realized. Compared to the mechanisms presented in [15, 16,

19], the cable spool mechanism has the advantage of using

very few moving parts. This does not only make the technical

realization simpler, but also reduces the erroneous inertial

forces that could be applied to the joint by the moving parts

[18]. Indeed, the only parts not rigidly connected to the

mechanical joint or the spring are the cable and the pulley,

which masses are very small. A similar mechanism was
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Fig. 1. Transmission mechanism with a non-circular cable spool.

proposed in [22], but the closed-form solution was derived

for a different mechanism where the linear spring is replaced

by a constant weight.

This paper is organized as follows: section II presents

the mechanism, the notations and the list of assumptions.

Section III details the methodology to derive the shape of

the spool from a prescribed torque profile. We show that

this problem has an exact (closed form) solution. Section

IV presents the experimental device and the results of ex-

periments carried out on three different shapes of spool. We

discuss the possible sources of errors between the theoretical

and experimental results.

II. NON-CIRCULAR CABLE SPOOL SYSTEM

We consider the mechanism shown in Fig. 1. A linear

spring is connected to a cable which goes through a pulley

and is wound around a non-circular spool. The spool axis is

rigidly attached to the axis of the mechanical joint (not shown

in the figure). Rref is the reference coordinate frame, Rspool

is the coordinate frame attached to the spool, O is the axis of

the spool (which is also the origin of Rref and Rspool) and

θs is the angle of Rspool with respect to Rref . The pulley P

is placed on the x axis of Rref at a distance R(> 0) from

O. T is the point where the cable is tangent to the spool,

ℓ(= TP ) is the length of cable between the tangency point

and the pulley, r(= OT ) is the varying radius of the spool,

θr is the angular position of r with respect to Rspool and α

is the angle of the cable at the tangency point with respect

to the perpendicular of the varying radius (pressure angle).

Because the spool is not circular, the torque τ generated in

O by the tension of the cable is a nonlinear function of the

spool’s angular position θs. The synthesis problem consists in

calculating the shape of the spool to synthesize a prescribed

torque profile τ(θs). In the derivation of the equations of the

spool’s contour, we use the following simplifications:

• The stiffness of the cable is infinite (no stretching)

• The radius of the pulley is null

• The radius of the cable is null1

Furthermore, the origin of θs is defined such that 0 ≤ θs ≤
θs,max.

1The real radius of the cable is considered a posteriori (see section IV).

III. SYNTHESIS OF NON-CIRCULAR SPOOL

A. Geometry of the proposed system

To calculate the shape of the spool, we first translate the

prescribed torque profile into a kinematic relationship. From

the Principe of Virtual Work:

τ(θs) dθs = k q dq (1)

where q is the displacement of the linear spring with respect

to its natural length, and k is the spring constant. Since the

tension of the cable must be strictly positive, we assume that

τ(θs) > 0 and q > 0. From (1), we calculate dq
dθs

and define

the function J as follows:

J(θs) =
dq

dθs
=

τ(θs)
√

2 k
∫ θs

0 τ(u) du+ (k q0)2
(2)

where q0 is the displacement of the spring when θs = 0.

J(θs) defines the kinematic input/output relationship that the

spool must achieve to synthesize the torque profile τ(θs).
J(θs) can be seen as the translation of a torque synthesis

problem into a kinematic synthesis problem.

As shown in Fig. 1, the spool’s contour is defined in polar

coordinates by the relationship r(θr). Considering that the

problem is parameterized by θs, we need to determine two

independent equations between r, θr and θs to solve the

problem.

B. Tangency condition

We consider the displacement of the tangency point T for

a small variation of θr, as shown in Fig. 2. We note δa the

distance between T (θr) and T (θr + δθr). Using the law of

cosines, we obtain

(δa)2 =(r(θr))
2 + (r(θr + δθr))

2

− 2r(θr)r(θr + δθr) cos(δθr) (3)

(r(θr))
2 =(r(θr + δθr))

2 + (δa)2

− 2r(θr + δθr)δa cosϕ (4)

We substitute (3) in (4) then calculate the Taylor expansion

in δθr.

2r





dr

dθr
−

√

(

dr

dθr

)2

+ r2 cosϕ



 +O (δθr) = 0 (5)

By taking the limit of the above expression when δθr tends

to 0 then substituting lim
δθr→0

ϕ by π
2 + α, be obtain

tanα = −1

r

dr

dθr
(6)

Equation (6) is called the tangency equation.
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C. Conservation of the total length of cable

We note ℓspool the length of cable wound around the spool,

ℓspring the length of cable from the pulley to the spring and

L the total length of cable. Since the total length of cable is

constant:

dL

dθs
=

dℓspool

dθs
+

dℓ

dθs
+

dℓspring

dθs
= 0 (7)

We now detail the calculation of the three terms of the right

hand side of (7).

a) First term:

We calculate the second order Taylor expansion in δθr of (3)

and remove the term dr
dθr

using (6). We obtain

(δa)2 =
r2

cos2 α
(δθr)

2 +O
(

(δθr)
3
)

(8)

From (8), we calculate
dℓspool
dθr

as follows:

dℓspool

dθr
= − lim

δθr→0

δa

δθr
= − r

cosα
(9)

Thus, the first term of the right hand side of (7) is

dℓspool

dθs
= − r

cosα

dθr

dθs
(10)

b) Second term:

Using the law of cosines in Fig. 1, ℓ is calculated as follows:

ℓ =
√

R2 + r2 − 2Rr cos(θr + θs) (11)

The total derivative of ℓ with respect to θs is represented by:

dℓ

dθs
=

(

∂l

∂θr
+

∂l

∂r

dr

dθr

)

dθr

dθs
+

∂ℓ

∂θs
(12)

We use (11) to calculate the partial derivatives of ℓ and (6)

to remove the term dr
dθr

. We obtain

dℓ

dθs
=

r

cosα

dθr

dθs
+

Rr

ℓ
sin(θr + θs) (13)

c) Third term:

Since the pulley and the anchor of the spring are fixed, the

length ℓspring + q is constant. Thus, we obtain from (2)

dℓspring

dθs
= − dq

dθs
= −J(θs) (14)

An important point is that we do not impose the angle α

to be small. δθr is an abstract variable used to derive the

O

Rref

θr (θr+δθr)
r(θr

)r
(θ

r
+
δ
θ r

)

T (θr)

T (θr+δθr)

δaϕ

Fig. 2. Displacement of tangency point

tangency condition but has no physical meaning in the real

mechanism. Since (6) and (9) are by definition the limit of

(5) and (8) when δθr tends to zero, the solution derived is

exact.

D. Calculation of explicit solution

By substituting (10), (13) and (14) in (7), we obtain the

following equation:

Rr

ℓ
sin(θr + θs) = J(θs) (15)

This is a first constraint relationship between r, θr and θs. We

now substitute (11) in (15), take the square of this equation,

and write it as

G =
R2 r2 sin2(θr + θs)

R2 + r2 − 2Rr cos(θr + θs)
= J2(θs) (16)

Using (6) to remove the term dr
dθr

, the derivative of this

equation with respect to θs is

dG
dθs

=

(

∂G
∂θr

− r tanα
∂G
∂r

)

dθr

dθs
+

∂G
∂θs

= 2 J(θs)J
′(θs)

(17)

Where J ′(θs) stands for
dJ(θs)
dθs

.

Equation (17) should lead to a differential equation on dθr
dθs

.

However, the value of ( ∂G
∂θr

− r tanα ∂G
∂r

) is exactly zero no

matter the values of r, θr, and θs. Thus, (17) is reduced to:

dG
dθs

=
∂G
∂θs

= 2 J(θs)J
′(θs) (18)

Using (16) to calculate ∂G
∂θs

, we obtain

R2 r2

ℓ4
sin(θr + θs)

·
[

cos(θr + θs) (R
2 + r2)− (1 + cos2(θr + θs))Rr

]

= J(θs)J
′(θs) (19)

This is a second constraint relationship between r, θr and

θs. For a given set of θs, the spool contour is defined by the

set of (r, θr) solution of the system (15),(19).

We now solve the system (15),(19) to obtain the explicit

solution of the spool contour. After substituting ℓ using (11),

equation (15) is equivalent to

R2r2X2 − 2RrJ2X + (R2 + r2)J2 −R2r2 = 0 (20)

where X = cos(θr + θs). Note that to clarify the equations,

we use the simplified notation J instead of J(θs). Assuming

that 0 < J ≤ r < R, the roots of (20) are

X =
RrJ2 ±

√
∆

R2r2
(21)

∆ = R2r2 (R2 − J2) (r2 − J2)

Thus, θr is obtained as:

θr = −θs + arccos

(

J2
±
√

(r2−J2) (R2−J2)

Rr

)

(22)

The ± symbol in (22) comes from the two distinct roots of

(20). We will show later that this symbol must be chosen

equal to sgn(J ′).
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After substituting (11) and (22), (19) is equivalent to

R2 r2
√

1−
(

1
Rr

(J2 ± Λ)
)2

(

R2 + r2 − 2Rr
(

1
Rr

(J2 ± Λ)
))2

(

r

(

1

Rr

(

J2 ± Λ
)

)

−R

)

·
(

r −R

(

1

Rr

(

J2 ± Λ
)

))

= J J ′ (23)

where Λ =
√

(r2 − J2) (R2 − J2). We now define r∗ =√
r2 − J2 and R∗ =

√
R2 − J2. Equation (23) is equivalent

to

± r∗R∗

R∗ ∓ r∗
= J ′ (24)

Since we imposed the condition r < R, (R∗∓r∗) is positive.

Thus, the ± symbol in (22), (23) and (24) must be chosen

equal to sgn(J ′). From (24), the explicit solution of r is

obtained as:

r =

√

√

√

√

J2(θs) +
J ′2(θs) (R2 − J2(θs))

(

J ′(θs) +
√

R2 − J2(θs)
)2 (25)

We note that this last equation does not depend on sgn(J ′).
The system (22),(25) defines the unique explicit solution of

the spool contour for a given function J(θs). For a given set

of θs, we first use (2) to calculate J , then we use (25) to

calculate the set of r and finally we use (22) to calculate the

set of θr. An important remark is that a necessary condition

so that a solution exists is J ≤ r. Under this condition, the

radius of the spool verifies the relationship J(θs) ≤ r(θs) <
R. Furthermore, since the tension in the cable must stay

positive, the objective torque profile τ(θs) must be strictly

positive.

E. Example of design

To illustrate the design methodology, we calculated three

different spools realizing a constant force spring, an expo-

nential softening spring and a cubic polynomial spring. The

shape of the spools is shown in Fig. 3(a), Fig. 4(a) and Fig.

5(a), the prescribed torque profile is shown in Fig. 3(b), Fig.

4(b) and Fig. 5(b), the varying radius r is shown in Fig.

3(c), Fig. 4(c) and Fig. 5(c) and the torsional stiffness of the

mechanism is shown in Fig. 3(d), Fig. 4(d) and Fig. 5(d).

The spools are shown at the angular position θs = 0, and

rotate counterclockwise when θs increases. G is the center of

mass. The angular displacement range is [0◦, 270◦] (identical

for the three spools). As shown in Fig. 5, although the spring

is always pulled when the spool rotates counterclockwise, it

is possible to realize a torque profile with a locally negative

stiffness. This is achieved by a sudden drop in the radius r.

F. Choice of design parameters

In the derivation of the equations of the spool (J (2),

r (25), θr (22)), we introduced three design parameters:

the spring constant k, the spring preloading (k q0) and the

location of the pulley R. Since the prescribed torque profile
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Fig. 3. Constant force spring
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Fig. 4. Exponential softening spring
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Fig. 5. Cubic polynomial spring
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is embedded in (2), a change of one or several design param-

eters results in a different spool shape but does not affect the

torque profile of the mechanism. We illustrate this property

with a simple example: for each set of design parameters

shown in Table I, we calculated the spool synthesizing the

torque profile shown in Fig. 5(b). The spools are shown in

Fig. 6.

The set {k, q0, R} can be chosen to optimize a design

criterion, such as minimizing the size of the mechanism.

However, calculating the set {k, q0, R} which optimizes a

given design criterion is a complicated optimization problem

because the equations of the spool are highly nonlinear,

and because the design has to satisfy complicated geometric

constraints to ensure that the contour is convex and without

loops. In this paper, we will not say further about the

optimization of the design parameters as it will addressed

in a future publication.

IV. EXPERIMENTS

A. Description of the experimental device

The experimental device is shown in Fig. 7. From the

right to the left: the spool, a torque sensor, a harmonic

gear, and a handle. Thanks to the high reduction ratio of

the harmonic gear (1:50), the spool can be rotated easily

by the experimentator using the handle. We use a scale

printed on the handle to measure the position of the spool.

In this experiment, we neglect the angular error due to

the twist of the kinematic chain (gear+couplings+sensor).

TABLE I

DESIGN PARAMETERS

k (N/m) q0 (mm) R (mm)

137 130 130

170 140 100

205 170 70

1233 127 24
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Fig. 6. Spools calculated with the same torque profile but different design
parameters
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Fig. 7. Experimental device

Indeed, the torsional stiffness of the kinematic chain from

the handle to the spool is 313 Nm/rad and since in our

experiments the torque at the spool’s axis does not exceed 4

Nm, the maximum angular error is 0.732◦. The experiments

are carried out with the 3 spools presented in section III-E.

The spools are cut in an 8 mm thick aluminum board using a

wire-cut machine tool. The spool masses are 172 g, 226 g and

233 g respectively. In order to take into account the thickness

of the wire, we removed 0.4 mm from the theoretical radius

r. The cable is a steel wire which diameter is 0.8 mm. We

assume the stretching of the cable to be negligible. The linear

spring, which consists in 3 identical springs in series, has a

stiffness constant of 137 N/m. The pulley has a diameter of

6 mm and is located 130 mm from the axis of the spool.

B. Results of experiments

The comparison of the theoretical (blue solid line) and

experimental (black x-mark line) torque profile is shown

in Fig. 8(a), 9(a) and 10(a). The experiments consisted in

increasing θs from 0◦to 270◦, then decreasing θs back to

0◦. We subtracted from the experimental data the gravity

moment due to the weight of the spool (calculated as a

function of θs using the mass and location of the center of

mass). The relative torque error is shown in Fig. 8(b), 9(b)

and 10(b). The average torque error for the three spools is

about 1.5%. The error consists mainly in a hysteresis effect

(higher torque when increasing θs) which might be caused by

friction in the ball bearings. This can be easily seen in Fig.

10(b). However, in Fig. 9(b) the error seems to be correlated

with the position of the spool. A possible explanation is a

small error in the preloading (k q0), which affects the load-

displacement function. In future designs, we plan to add a

screw to finely tune the preloading in order to increase the

accuracy of the synthesized torque profile.

V. CONCLUSIONS

In this paper, we proposed a cable mechanism based on a

non-circular spool which synthesizes a nonlinear rotational

spring from a linear spring. We showed that for a prescribed

torque profile τ(θs), there is a closed-form solution of the

shape of the spool which synthesizes this function. We

derived the equations of the spool, then verified the design

methodology by experiments with three different spools

realizing a constant force spring, an exponential softening

spring and a cubic polynomial spring. The experiments
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(a) Torque vs. spool’s angular posi-
tion
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Fig. 9. Exponential softening spring
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(a) Torque vs. spool’s angular posi-
tion
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Fig. 10. Cubic polynomial spring

showed that the prescribed torque profiles where achieved

with an average accuracy of 1.5%. This mechanism has the

advantage of using very few moving parts, which makes

it easy to manufacture and reduces the erroneous inertial

forces that could be applied to the joint by moving parts.

Furthermore, the size of the spool can be scaled by changing

the design parameters k, q0 and R.

Future work will include the development of a compact

nonlinear spring unit which could fit in the ankle joint of

a walking robot. We also plain to develop an antagonistic

mechanism which could synthesize a torque profile with

both positive and negative magnitude. Further studies will

address the conditions that a torque profile must satisfy to

be realizable with this mechanism.
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