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Abstract— In the densely-populated urban areas, pedestrian
flows often cross each other and congestion occurs. It may cause
discomfort feeling or pedestrian accidents. In order to reduce
the congestion or the risk of accidents, it is required to control
swarm flows of pedestrian. This paper proposes an implicit
control method of the crossing pedestrian flows. Pedestrian flow
is modeled with the continuum fluid model and its congestion
degree is calculated as the fluid density. From a simulation
of the crossing flows with the continuum model, it is verified
that diagonal stripe pattern of the congestion degree emerges.
Moreover, the authors propose an implicit control method
to improve average flow velocity by moving guides. Focusing
on periodic phenomenon of the crossing flows, we investigate
the relationship between its temporal and spatial frequency
and a periodic motion of guides. From this relationship, a
control method based on the temporal and spatial frequency is
proposed.

I. INTRODUCTION

Congestion of pedestrian flows often occurs in the densely-
populated urban areas. Moreover, pedestrian flows cross
each other in the station, scramble crossing, museum, or
event sites. For example, pedestrian flows with different
destinations often cross around the ticket gate in the station,
as shown in Fig. 1(a). It may cause discomfort feeling and
pedestrian accidents. In order to reduce the congestion or
risk of accidents, it is desired to make pedestrian flows
smoother by guidance or navigation. For effective guidance,
it is required to model and control pedestrian flows. Two
types of model of pedestrian flows have been proposed:
macroscopic model with fluid or continuum dynamics [1][2],
and microscopic model with particle or homogeneous agent
[3][4][5]. It is well known that a self-organization occurs in
crossing pedestrian flows [2][6]. When flows cross vertically
as shown in Fig. 1(b), diagonal stripe pattern emerges and
the congestion degree of each flows varies in the crossing
area. This phenomenon has been simulated with particle or
homogeneous agent model [7][8].

On the other hand, for the navigation of pedestrians,
methods to give commands to each individuals have been
proposed [9]. However, all individuals need to carry a device
to receive the commands. Therefore, it is difficult to apply
this approach to crowded city with unspecified number of
pedestrians. Although Narumi et al. [10] proposed a guidance
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Fig. 1. (a) Congestion in a station and (b) crossing pedestrian flows. When
two pedestrian flows cross vertically, diagonal stripe pattern emerges.

system with moving image on the wall, their method is
limited to direct guidance to individuals. In research fields
of multi-robotics or multi-agent system, there are researches
on shepherding behaviors [11][12]. This approach is indirect
guidance of swarm, dealing with unspecified number of
agents. Hereafter, we define implicit control of swarm as
indirect control of macroscopic behavior with a limited
number of commands. Okada and Homma [13] proposed a
congestion reducing method with optimal location of parti-
tions, which is also regarded as implicit control of swarm.
They focused on a single flow, in which the congestion
distribution converged to a steady state. In order to control
pedestrian flows in the station or crossing, it is important
to consider dynamical phenomenon of the congestion which
emerges in the crossing pedestrian flows.

In this paper, we propose modeling and control method of
the crossing pedestrian flows. In a similar way to [2][13], we
calculate the congestion degree as the density of continuum
fluid based on the continuity equation of the compressive
fluid. Moreover, an implicit control method to improve aver-
age flow velocity by moving guides is proposed. Focusing on
periodic phenomenon of the crossing flows, we investigate
the relationship between its temporal and spatial frequency
and a periodic motion of guides. From this relationship, a
control method based on the temporal and spatial frequency
is proposed. We also apply the proposed method to the
particle model by setting virtual density on each particles.
We verify the validity of the method with simulations.

II. MACROSCOPIC MODEL OF PEDESTRIAN FLOW WITH
VELOCITY FIELD

We consider pedestrian movement in two-dimensional
space. In a similar way to [13], macroscopic behavior of
pedestrian flow is modeled with a velocity field: velocity at
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Fig. 2. Velocity vector field setting

position x is given by the following vector field f(x).

v = f(x) (1)

x =
[
x y

]T ∈ R2 (2)

Focusing on a pedestrian flow along a center line as shown
in Fig. 2, f(x) is designed as follows:

f(x) =

{
v0d (∥n∥ ≤ w)
v0d+ k(∥n∥ − w) n

∥n∥ (∥n∥ > w)
(3)

where d is the unit directional vector of the line, and n is
the normal vector from the position x to the line. w and v0
denote the width of the pedestrian flow and the reference
velocity in the flow region. k is a magnitude of attracting
effect to the flow.

In this section, we verify the diagonal stripe pattern
formation in the crossing flows by modeling each pedestrian
with a particle. We call this model particle model. Suppose
that there are two pedestrian flows along x- and y-axes. Let
the vector fields of the flows be fA and fB , where their
reference velocity is v0 = 1.0 m/s. The velocity of a particle
i along the vector field fA is given as follows:

vi = fA(xi)−
∑
i ̸=j

s(∥rij∥)
rij
∥rij∥

(4)

rij = xj − xi (5)

where xi and vi are position and velocity of the particle
i, respectively. This model is similar to the Social Force
Model [3]. The first term in the right-side of (4) represents
the attractive effect of the destination, and the second term
represents a repulsive effect of the nearby particles (the
particle i keeps a distance from nearby particles). rij is the
relative position vector from the particle i to j. The repulsive
effect is modeled with s(r), a sigmoid function defined as
follows:

s(r) =
c

1 + exp {a(r − b)}
(6)

where a, b and c are constant values. The velocity of particles
along the vector field fB is given in a similar way.

Then, we simulate the crossing flows which follow the
vector field fA and fB . Fig. 3 shows a snapshot of the sim-
ulation. We observed that a diagonal stripe pattern emerged
after two flows have crossed. This result is consistent with
the phenomenon mentioned in [6]. Therefore, the modeling
of pedestrian flows with the velocity field is appropriate.
However, it is difficult to evaluate the congestion degree
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Fig. 3. Simulation of the crossing flows with the particle model

quantitatively. In the following section, we propose the
continuum model of the crossing pedestrian flows.

III. CONTINUUM MODEL OF CROSSING PEDESTRIAN
FLOWS

A. Continuum Model Based on Continuity Equation

Suppose that flow A and B follow the vector field fA and
fB , respectively. We quantify the congestion degree of flow
A and B as ρA and ρB , the density of the continuum. Let the
flow velocity be vA = [vA wA]

T and vB = [vB wB]
T . In

a similar way to [2][13], time variation of the flow density
follows the following continuity equation.

∂ρi
∂t

= −ρi

(
∂vi
∂x

+
∂wi

∂y

)
−
(
∂ρi
∂x

vi +
∂ρi
∂y

wi

)
(i = A,B) (7)

Then, velocities of each continuum are given as follows:

vA = fA(x)− α∇ρA − β∇ρB (8)
vB = fB(x)− α∇ρB − β∇ρA (9)

where ∇ρi represents the following density gradient.

∇ρi =

[
∂ρi
∂x

∂ρi
∂y

]T
(10)

The second and third terms in the right-hand side of (8) and
(9) represent diffusion terms of each flow. α and β are their
coefficients.

B. Simulation of Crossing Flows with Continuum Model

We simulate the density variation of the crossing flows
based on the continuum model. Continuity equation (7) is
calculated with the finite volume method. Assuming that
pedestrians enter steadily, boundary conditions of the density
is set as follows:{

ρA(x, t) = ρA0 (x = −2, |y| ≤ 0.5)

ρB(x, t) = ρB0 (|x| ≤ 0.5, y = −2)
(11)

We call ρi0 input density. In this paper, we consider a case
of ρA0 = ρB0 = ρ0 for simplicity. Fig. 4 shows a simulation
result of spatial distribution of density in steady state, setting
ρ0 = 14. In the figure, the blue color indicates ρi = 0, and
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Fig. 4. Simulation result of spatial distribution of density in the crossing
flows with the continuum model
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Fig. 5. Time variation of average velocity of the crossing flows

the red color indicates the highest density. We observed that
the diagonal stripe pattern emerged after the flows crossed.

In order to evaluate how smooth the pedestrian flows are,
we define an average flow velocity. From actual velocity
vi(x, t) at position x, we extract the velocity element parallel
to the original vector field f i(x) as follows:

v̂i = f#
i vi (12)

where f#
i = (fT

i f i)
−1fT

i . Using v̂i, we define the average
velocity of time t as follows:

v̄i(t) =

∫
ρi∥v̂i∥ dx∫
ρi dx

(i = A,B) (13)

The right-hand side of (13) implies proportionality of the
total amount of flow rate to the density. Fig. 5 shows time
variation of the average velocity in the crossing flows. The
two flows collide at around 100s and the velocity declines
rapidly. After that, the stripe pattern begins to emerge at
150s. After 200s, the stripe pattern propagates steadily and
the velocity recovers.

C. Validation of Continuum Model

In order to verify the validity of the continuum model, we
compared a variation of the average velocity of the particle
model with the continuum model when the input number (or
input density) was increased.

Firstly, in the particle model, we calculated the average
velocity when the number of input particles in the total
simulation time was increased. Fig. 6(a) shows the variation
of the average velocity of the particles. When the number of
input particles varied from 0 to 100, particles moved with the
reference velocity v0. As the total input number increased,
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Fig. 6. Variation of the average velocity when the number of input is
increased.
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the collision rate became higher and we observed that the
average velocity decreases.

Next, in the continuum model, we calculated the average
velocity of the crossing flows when the input density ρ0
was increased. Fig. 6(b) shows the variation of the average
velocity. When ρ0 became larger than 11.5, the average
velocity decreased in a similar way to the particle model.
Therefore, it is shown that the property of flow velocity is
well modeled with the continuum model.

IV. CONTROL OF CROSSING FLOWS
BASED ON TEMPORAL/SPATIAL FREQUENCY

A. Implicit Control of Swarm with Guides

We propose an implicit control method of the crossing
flows by moving guides. Let the position of a guide be pj .
Suppose that each flow is influenced by the repulsive velocity
from the guide, as shown in Fig. 7. The repulsive velocity
vrj at a position x defined as follows:

vrj = −s(∥rj∥)
rj
∥rj∥

(14)

where rj = pj − x is the relative position from the guide.
Considering the repulsive effect, velocities of each fluid are
determined as follows:

vA = fA(x)− α∇ρA − β∇ρB +
∑
j

vrj (15)

vB = fB(x)− α∇ρB − β∇ρA +
∑
j

vrj (16)

We move guides so as to improve the average flow velocity.
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Fig. 9. Time variation of average velocity when guide people move
periodically.

B. Temporal/Spatial Frequency Analysis of Crossing Flows

As shown in Sect. III, the density varies periodically in
the crossing flows. In this section, we investigate variation of
the average flow velocity when two guides are also moved
periodically, as shown in Fig. 8. The positions of the two
guides, pA and pB , are given as follows:

pA = p0 + w{1− cos(2πωGt)}dB (17)
pB = p0 + w{1− cos(2πωGt+ π)}dA (18)

where p0 is the intersection of the flows as shown in Fig. 8,
w is the width of the flow, and ωG is the motion frequency
of the guides. dA = [1 0]T and dB = [0 1]T are directional
vectors of each flow. We set the motion of the guides so
that their phases are opposite. As shown in Fig. 8, the
guides move vertically to the each flow in border lines of
the crossing area.

Firstly, we simulated the density variation in the crossing
flows with the guides, setting ρ0 = 14 and ωG = 0.065Hz,
for example. Fig. 9 shows simulation result of time variation
of the average flow velocity. Rapid decrease of the velocity
due to collision of the flows is prevented. The right columns
of Fig. 9 show closeup of steady state between 250s and
500s. In both A and B, the average velocity is increased.

Next, we investigate relationship between the average
velocity and guide frequency ωG. The average velocity in
the steady state of the crossing flows was simulated changing
ωG from 0.050 to 0.095Hz by 0.001Hz step size, where the
input density is ρ0 = 14. Fig. 10 shows the average velocity
of the flow A. The average velocity is maximized when
ωG0 = 0.062Hz (indicated by the dashed line). If this optimal
frequency ωG0 is found automatically, we can control the
crossing flows so that the average velocity becomes large.

In order to find ωG0, let us examine the characteristics of
the crossing flows phenomenon when the guide frequency
ωG is lower or higher than ωG0. In particular, we focus
on temporal and spatial frequency of the crossing flows.
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Fig. 10. Relationship between the frequency of guide motion ωG and the
average flow velocity, where the input density is ρ0 = 14.
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Fig. 11. Relationship between the frequency of guides ωG and temporal
frequency difference between the guide and the crossing flows ∆ω, where
the input density is ρ0 = 14.

Temporal frequency is computed by FFT analysis of time-
series data of the density at a representative position, for
example, the center position of the crossing area. Let the
temporal frequency of the crossing flows be ωF , and differ-
ence between ωF and ωG be ∆ω, namely,

∆ω = ωF − ωG (19)

Fig. 11 shows the relationship between ωG and ∆ω. In the
figure, the dashed line indicates the optimal frequency ωG0.
From this result, we can characterize the temporal frequency
as follows:

• When ωG is lower than ωG0, ∆ω decreases as ωG

increases.
• When ωG is higher than ωG0, ∆ω is almost zero.
Next, let us examine the characteristics of the spatial

frequency of the crossing flows. The inverse of the spatial
frequency is equivalent to the width of the density stripe
pattern, which is computed from spatial distribution of the
density. Let the spatial frequency be νF . Fig. 12 shows
relationship between ωG and the spatial frequency νF . From
this result, we can characterize the spatial frequency as
follows:

• When ωG is higher than ωG0, νF increases as ωG

increases.
The above simulation results were calculated under the

condition ρ0 = 14. Results when the density input is given as
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Fig. 12. Relationship between the frequency of guides ωG and spatial
frequency of the crossing flows ν, where the input density is ρ0 = 14.
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ρ0 = 11, 12, 13, 15 are shown in Fig. 13. The upper, middle
and lower rows of Fig. 13 show the average velocity, ∆ω and
νF , respectively. These results are similar to those shown in
Fig. 10, 11, 12.

C. Control Method Based on Temporal/Spatial Frequency
From the above discussion, it is possible to find the

optimal guide frequency ωG0 by adjusting ωG as follows:
1) In low-frequency area, ωG is increased so that ∆ω

becomes zero.
2) In high-frequency area, ωG is decreased so that νF

becomes low.
We switch between these two strategies depending on if ∆ω
is equal to zero or not.

Let the guide frequency in the i-th period be iωG. From
the temporal and spatial frequency of the crossing flows, iωF

and iνF , we determine the guide frequency in the next period
i+1ωG as follows:

i+1ωG =

{
iωG + kω∆ω (∆ω ≥ ∆ω0)
iωG + kν(ν0 −i νF ) (∆ω < ∆ω0)

(20)

where kω and kν are the gains of the temporal and spatial
frequency, respectively. ν0 is an offset value of the spatial
frequency to prevent ωG from changing rapidly near ωG0.
∆ω0 is a threshold of ∆ω.

D. Simulation of Crossing Flows Control
We simulated the density variation the crossing flows with

the proposed control method. The density input was set as
ρ0 = 14, and the control parameters were set as follows:
kω = 0.08, kν = 0.001, ν0 = 1.0. Fig. 14 shows the average
velocities of the crossing flows, in which the right column
shows closeup of the steady state between 250s and 500s.
The average velocities increased by applying the proposed
control method. Fig. 15 shows time variation of the guide
frequency and the temporal frequency of the crossing flows.
We observed that the guide frequency was adjusted so that
∆ω becomes zero. Fig. 16 shows snapshots of the spatial
distribution of the density. White poles indicate the position
of the guides. We observed that the width of the stripe pattern
increased. The attached video provides more detail.
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Fig. 14. Time variation of average velocity with proposed control method
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V. CONTROL OF CROSSING FLOWS WITH PARTICLE
MODEL

In order to apply the proposed control method to real
crossing pedestrian flows, we need to calculate the density,
which is a continuous quantity, from information of position
and number of pedestrians, which are discrete quantity. We
apply the proposed control method by calculating a virtual
density from pedestrian position as follows:

ρ̂(x) =
∑
i

miW (∥ri∥, h) (21)

where xi and mi are the position and virtual mass of a
pedestrian, respectively. ri = xi − x is the relative position
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Fig. 16. Simulation result of spatial distribution of density in the crossing
flows with proposed control method

vector to the particle. W (x, h) is the cubic kernel function
defined by the following equations, which is often used in
Smoothed Particle Hydrodynamics [14] in order to calculate
the density.

W (x, h) =


10

7πh2

{
1− 3

2

(x
h

)2

+
3

4

(x
h

)3
}
(0 ≤ x < h)

5

14πh2

{
2−

(x
h

)3
}

(h ≤ x < 2h)

0 (x ≥ 2h)

(22)

We simulated the crossing flows with the proposed control
method, assuming the particle model instead of actual pedes-
trian data. Setting mi = 1 and h = 0.15, the virtual density
and its temporal and spatial frequency were calculated. Fig.
17 shows a snapshot of the simulation. White circles indicate
the guides. The attached video provides more detail. Fig.
18 shows time variation of the average flow velocity in the
simulation. We observed that the velocity was improved by
the proposed control method.

VI. CONCLUSION

In this paper, we proposed the continuum model of the
crossing pedestrian flows and its implicit control method with
guide motion. With the continuum model, we can evaluate
the dynamical characteristics of the congestion. Then, we
proposed a control method based on the temporal and spatial
frequency of the crossing flows. Using this method, the
average flow velocity was improved in both continuum model
and particle model. The validity of the proposed method was
verified by simulations.
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Fig. 17. Snapshot of the crossing flows by applying proposed control
method to the particle model
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Fig. 18. Time variation of average velocity of the crossing flows by
applying proposed control method to the particle model
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