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Abstract— To introduce a passive compliant mechanism for
robot joints is an effective way for impact absorption. However,
because robot joints also require high torque transmission
characteristic, the simultaneous implementation of stiffness and
softness is a significant issue. In this paper, we develop a
torque transmission mechanism with nonlinear passive stiffness
that realizes from zero to extremely high stiffness based on
mechanical singularity. The analysis of nonlinear stiffness is
established and the experimental evaluation is shown. A four-
legged robot with the proposed mechanism is designed and the
effectiveness of high nonlinearity of the proposed mechanism
is shown by simulation.

keywords nonlinear passive stiffness, closed kinematic
chain, mechanical singularity

I. INTRODUCTION

Robots are normally designed with rigid links for precise
task execution. However, in this case, an impact force
damages to the robot body and its environments, which
causes a breakage of members, failure of control system and
hurt of people. From flexibility and safety points of view,
to introduce softness to robot members or joints gives an
effective solution. A soft mechanism is applied for a parts
assembly task in a factory [1]. Because an elastic link can
yield large power using accumulated potential energy, it is
applied for a golf swing robot [2].

For realization of a soft robot, (1) active compliance,
(2) passive compliance, and (3) programmable passive com-
pliance are proposed so far. Active compliance is realized
by a force control of actuators, and some methods have
been reported [3], [4], [5], [6], [7]. However, the active
compliance does not completely realize softness in high
frequency (for impact force), because of the low frequency
response of actuators and/or sensors in the closed loop. Some
mechanisms that realize programmable passive compliance
with nonlinear spring and additional actuator [8], [9], [10]
or with antagonistic wire driven mechanisms [11] have
been proposed. These are not simple realization because the
additional actuator increases the weight and volume of the
robot. The backlash clutch in [12] realizes zero-stiffness and
high torque transmission based on mechanical backlash and
its control.

Passive compliance is simple and effective for softness of
the robots. Because high stiffness for precise task execution

would be needed at low link actuation, which is not realized
in the conventional softness, the simultaneous realization
of stiffness and softness is an important issue, and highly
nonlinear stiffness will be effective.

In this paper, we develop a nonlinear passive stiffness
mechanism. This mechanism realizes

• zero-stiffness based on mechanical singularity
• high nonlinearity of stiffness

A four-legged robot with the proposed mechanism is de-
signed and the effectiveness of high nonlinearity of the
proposed mechanism is shown by simulation.

II. ZERO-STIFFNESS BASED ON MECHANICAL

SINGULARITY

A. Mechanism

Joints and links configuration of the proposed mechanism
is shown in figure 1. The rotational axes of joints R1 ∼ R5 are
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Fig. 1. Joints and links configuration of the proposed mechanism

set along z-axis, x-axis, x-axis, z-axis and z-axis respectively.
Their rotation angles are defined by θ1 ∼ θ4 and φ . Figure 2
shows the cross-section drawing of the prototype. The input
torque τin that works Disk Din is transmitted to τout on Disk
Dout through Link L. Roller bearings are used for R2 and R3,
ball bearings are used for other joints. To reduce the influence
of backlash, pre-tension is added to link L by tightening the
screw in S. In the following of this section, all materials are
assumed to be rigid.
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Fig. 2. Cross-section view of the proposed mechanism

B. Zero-stiffness analysis based on null space of Jacobian
matrix of constraints

In general, the degree-of-freedom (DOF) F of a 3D
mechanism is calculated by

F = 6(n−1)−∑
i
(6− i)ni (1)

where n means the number of links and ni means the summa-
tion of i-DOF revolute pairs. The DOF of the proposed mech-
anism Fp is calculated by Fp = −1 (n = 5, n1 = 5). Because
� = L1−2L2 yields the dependency of the constraints, Fp = 0
is obtained, which means this mechanism is a structure and
it does not move from mechanical DOF point of view.

On the other hand, by considering the closed loop of A→
B→ C→ D→ A, the following constraints of this mechanism
are satisfied.[

f T (θ1,θ2,θ3,θ4,φ) 1
]T =

Lr
xLL2

z Rθ1
z Rθ2

x L�
zRθ3

x Rθ4
z LL2

z L−r
x Rφ

z L−L1
z e0 = e0 (2)

e0 =
[

0 0 0 1
]T (3)

diag
{[

gT (θ1,θ2,θ3,θ4,φ) 1
]}

=

Rθ1
z Rθ2

x Rθ3
x Rθ4

z Rφ
z I4 = I4 (4)

where I4 ∈ R4×4 means identity matrix, R j
i , Lj

i ∈ R4×4 mean
the coordinates transformation of rotation and translation
respectively by j on i axis. diag{[a1 a2 · · · ]} means a
diagonal matrix whose diagonal elements are a1, a2, · · ·.
f and g ∈ R3×1 give the position and orientation constraints
respectively. There are six independent constraints that are
satisfied at

Θ =
[

θ1 θ2 θ3 θ4 φ
]T = 0 (5)

Consider the minimal change Δθi and Δφ for θi and φ .
By neglecting more than second order minimal value, f and
g are approximated at given Θ0 as follows.[

f (Θ0 + ΔΘ)
g(Θ0 + ΔΘ)

]
=
[

f (Θ0)
g(Θ0)

]
+ J(Θ0)ΔΘ (6)

ΔΘ =
[

Δθ1 Δθ2 Δθ3 Δθ4 Δφ
]T (7)

J(Θ0) =
[

∂ f (Θ)
∂Θ

T ∂g(Θ)
∂Θ

T
]T
∣∣∣∣∣
Θ=Θ0

∈ R6×5 (8)

When the second term of the right-hand side in equation (6)
is equal to zero, Θ0 + ΔΘ also satisfies the constraints as

f (Θ0 + ΔΘ) =
[

0 0 0
]T (9)

g(Θ0 + ΔΘ) =
[

1 1 1
]T (10)

which means this mechanism can move to the direction of
ΔΘ without any strain of members, that is to say, the stiffness
of this mechanism is equivalent to zero to the direction of
ΔΘ. When the rank of J is less than 5, non-zero ΔΘ exists,
which comes from mechanical singularity.

On the proposed mechanism, rank of J at Θ0 = 0 is
calculated as

rank J = 3 (< 5) (11)

The orthogonal bases of the null-space of J are obtained as

ΔΘ1 =
[ −0.71 0 0 0.71 0

]T (12)

ΔΘ2 =
[

0.33 −0.41 0.41 0.33 −0.66
]T (13)

ΔΘ1 means link L rotates around z axis. On the other hand,
ΔΘ2 means the upper disk can rotate Δφ because Δφ �= 0,
which means this mechanism has zero-stiffness on R5 axis
at Θ = 0 in spite of consisting of rigid links.

III. STIFFNESS ANALYSIS OF THE MECHANISM

A. Prototype of the proposed mechanism
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Fig. 3. Prototype of the proposed mechanism

Fig. 4. Twist motion of the designed mechanism

Figure 3 shows the prototype of the proposed mechanism.
In this section, it is assumed that link L is elastic and
other members are rigid and backlash of the bearings are
small. The rotation of Dout by φ yields nonlinear spring

1736



characteristic because of the elasticity of link L. Figure 4
shows the twist motion of the mechanism. In this figure,
there are three links L, which is for high strength.

B. Force and momentum working on L
Force and momentum that apply to L in the twist motion

are investigated. Assume that length of link L changes from
� to � + λ due to the rotation by φ on R5 axis as shown
in figure 5. Figure 5-(b) shows the top view of figure 5-
(a). One straight line passing through points B and C is
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Fig. 5. Relationship between φ and �+λ

uniquely decided and R1, R4 rotate so that R2, R3 axes are
orthogonal to this line. The rotation angles are represented
by θ1 = −θ4 = (φ −π)/2. This result is derived from two
parallelisms of R1, R4 axes and R2, R3 axes. From these
considerations any momentum do not apply, but tension for
the length direction applies to link L with respect to the
rotation φ .

C. Definition of nonlinear stiffness
The torsional stiffness Kφ on R5 axis of this mechanism is

calculated. In this paper, nonlinear stiffness is defined from
the following consideration. The torque τ that arises accord-
ing to the rotation φ is represented by τ = τ(φ). Consider a

Proposed
mechanism

M

φ = 0 φ =φ0

M

Fig. 6. Link mechanism with the proposed mechanism

two-link mechanism with the proposed mechanism as shown
in figure 6. Because of the mass M, the proposed mechanism
rotates φ = φ0. The generated torque is calculated by

τ0 = τ(φ0) (14)

Let us consider stiffness at φ = φ0 in proximity. From
equation (14), we obtain

τ0 + Δτ = τ(φ0)+
dτ(φ)

dφ

∣∣∣∣
φ=φ0

Δφ (15)
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Fig. 7. Relationship between r, φ and �+λ

and stiffness Kφ at φ = φ0 is defined as

Kφ (φ0) =
dτ(φ)

dφ

∣∣∣∣
φ=φ0

(16)

D. Calculation of stiffness

Let me assume that the spring constant of link L for length
direction is defined by KL (to be a linear spring) and that
torsional torque τ on R5 axis yields rotation by φ and the
length of link L is changed from � to �+λ . The accumulated
kinetic energy E is represented by

E =
∫ φ

0
τ(φ) dφ =

∫ λ

0
KLλ dλ =

1
2

KLλ 2 (17)

The differential of E with respect to φ gives torque τ as
following:

dE
dφ

= τ(φ) = KLλ
dλ
dφ

(18)

The geometry shown in figure 7 gives

2r2(1− cosφ)+ �2 = (�+ λ )2 (19)

by cosine formula and Pythagorean theorem, and λ is
represented by

λ =
√

2r2(1− cosφ)+ �2 − � (20)

The differential of λ with respect to φ gives

dλ
dφ

=
r2 sinφ√

2r2(1− cosφ)+ �2
(21)

Equations (18), (20) and (21) lead the torque τ with respect
to the function of φ as following:

τ(φ) = KL

(
r2 sinφ − �r2 sinφ

Lφ (φ)

)
(22)

Lφ (φ) =
√

2r2(1− cosφ)+ �2 (23)

Stiffness Kφ is obtained from the differential of equation (22)
with respect to φ as following:

Kφ (φ) = KL

(
r2 cosφ − �r2 cosφ

Lφ (φ)
+

�r4 sin2 φ
L3

φ (φ)

)
(24)

The change of Kφ is shown in figure 8. The horizontal axis
shows φ (0◦∼8◦) because the deflection cannot be much

1737



because of Yield Point of link L. Link L is assumed to be an
8mm×16mm square pole (material : A2017 aluminum alloy)
with length 30mm, r = 16mm and KL = 1.1×108N/m. In the
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Fig. 8. Stiffness of the mechanism

Yield Point of link L (with 0.1% strain), φ is 4.81◦ and Kφ is
256Nm/rad, which is equivalent to the torsional stiffness of
duralumin cylinder with 7.5mm diameter and 30mm length.
This figure shows that stiffness of this mechanism has zero
stiffness at φ = 0 and high nonlinearity acceding to the
change of φ .

The efficiency of pre-tension T for link L is discussed in
the following. Equation (22) is changed by the pre-tension
T as following:

τ(φ) = KL

(
r2 sinφ − �r2 sinφ

Lφ (φ)

)
+ T

r2 sinφ
Lφ (φ)

(25)

The stiffness that is the differential of τ with respect to φ is
represented by

Kφ (φ) = KL

(
r2 cosφ − �r2 cosφ

Lφ (φ)
+

�r4 sin2 φ
L3

φ (φ)

)

+ T

(
r2 cosφ
Lφ (φ)

− r4 sin2 φ
L3

φ (φ)

)
(26)

Because of the influence of T , Kφ at φ = 0 becomes

Kφ (0) =
Tr2

�
(27)

that is not zero. The pre-tension T enables the adjustment of
the stiffness at φ = 0.

E. Experimental evaluation of nonlinear stiffness

The stiffness of the designed mechanism is measured
by experiments. A torque-load by a weight (0.010∼4.0kg)
is applied to this mechanism and the rotation angle φ is
measured with the pre-tension T = 0. Two types of the link
L as shown in figure 9 are designed. One is a normal link
without slits, another is a spring link with slits. The results
are shown in figure 10. The relationship between torque τ
and rotation angle φ has high nonlinearity.

Stiffness of the mechanism with each link is calculated.
The results are shown in figure 11. The theoretical values are

Normal link

Spring link

Fig. 9. Two types of designed link L
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Fig. 10. Torque τ and rotation angle φ

shown together. The spring constant of each link is obtained
from Finite Element Method (FEM). In both results, the
experimental results show lower stiffness than the theoretical
values, which is because the strains are caused also in the
parts other than link L and backlash of the bearings are not
small. These results show the zero-stiffness at φ = 0 and high
nonlinearity of the stiffness according to the change of φ . The
linear stiffness draws a horizontal line (spring constant).
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Fig. 11. Stiffness of normal and spring link
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IV. EVALUATION OF THE EFFECTIVENESS OF HIGH

NONLINEAR STIFFNESS

A. Four-legged robot

A four-legged robot with the proposed mechanism on
the knee joint is designed. Figure 12 shows the photograph
of the designed robot and knee joint with the proposed
mechanism. The proposed mechanism is indicated by a
circle. This mechanism is a compact design of the first
prototype shown in figure 3. Each leg has three degrees
of freedom. Two DOF are on the base (z-axis and x-axis)
and one is on the knee (x-axis). 60W DC motor and 1:50
reduction gear are used for each joint. The size of this robot is
about 350mm(width)×450mm(length)×450mm(height) and
the weight is about 15kg. The four-legged robot requires:

• High stiffness to support the body weight and to yield
high power for motion

• High softness to absorb the impact force

Fig. 12. Four-legged robot with the proposed mechanics

B. Body weight support

To evaluate the effectiveness of nonlinear stiffness of the
proposed mechanism, the robot body motion on landing is
calculated. As shown in figure 13, the robot falls form the
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Fig. 13. Robot motion on landing

height h and lands bending its knee joints, which yields the
torque by the stiffness to support the body. The motion of
the body height x is shown in figure 14. We set h = 0.1m, the
length of the legs � = 0.2m and m = 10, 20 and 30kg. The
solid lines show the results with the proposed mechanism
(nonlinear spring) on the knee joint. For comparison, the
dashed lines show the results when a linear torsional spring
is used. The spring constant of the linear spring is set so as
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Fig. 14. Body motion on the four-legged robot

to the final value of x with linear spring be equal to that of
nonlinear spring when m = 10. The damping parameter of
the knee joint is selected appropriately. Figure 15 shows the

with nonlinear spring with linear spring

blue : m = 10kg red : m = 20kg black : m = 30kg

Fig. 15. Final position of the robot

final positions of the robot. These results show that, when we
use a linear spring, the final value of x changes in proportion
to weight m. On the other hand, when the nonlinear spring
is used, the final value of x has small change, which means
high stiffness to support the robot body is realized.

C. Impact force absorption

Let me consider the applied force that is caused by
the collision with an obstacle as shown in figure 16. The

Fi

Fb φ0

Fig. 16. Collision with an obstacle

impulsive force Fi applies to leg and it is transferred to the
body by Fb. To investigate the impact force, we obtain the
frequency response form Fi to Fb by using the input

Fi = Asin(ωt) (28)
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Fig. 17. Model for frequency responses

based on two models shown in figure 17. By the curve fitting
method, the transfer function

Fb = G(s)Fi (29)

is obtained. Frequency response depends on the input ampli-
tude because of high nonlinearity, and A is set 10 and 100.
The results are shown in figure 18. These figures show that
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the impact force dose no become smaller even if we use the
nonlinear spring (zero stiffness at φ = 0) because the initial
value of the impulse response is obtained from the following
Initial value theorem.

Fb(0) = lim
s→∞

sG(s) = ∞ (30)

Based on the obtained transfer function, the impulse P(t)

P(t) =
∫ t

0
Fb(t)dt (31)

is calculated. The results are shown in figure 19. These values
are obtained from the step responses of G(s). These figures
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Fig. 19. Total impulse of the collision with an obstacle

show that the total impulse will be smaller when nonlinear
spring is utilized.

V. CONCLUSIONS

In this paper, we develop a torque transmission mechanism
with nonlinear passive stiffness. The results of this paper are
as follows:

• Based on mechanical singularity of the closed kinematic
chain, zero-stiffness is realized.

• Zero-stiffness and nonlinear stiffness of the proposed
mechanism are analyzed based on the kinematic con-
straints and they are evaluated by the experiments.

• A four-legged robot is designed with the proposed
mechanism on knee joint.

• The effectiveness of high nonlinear stiffness of the pro-
posed mechanism for supporting the body and impact
absorption is shown by simulations.
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