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Abstract  

For the development of the intelligent robot with many 
degree-of-freedom, the reduction of the whole body mo- 
tion and the implementation of the brain-like information 
system is necessary. In this paper, we propose the ie- 
duction method of the whole body motion based on the 
singular value decomposition and design method of the 
brain-like information processing system using the nonlin- 
ear dynamics network with the polynomial configuration. 
By using the proposed method, we design the humanoid 
whole body motion that is caused by the input sensor 
signals. 

Keywords:  Brain-like information processing, Whole 
body motion, Reduction method, Polynomial design of 
the nonlinear dynamics 

1 Introduct ion  

The robot intelligence has been discussed in many re- 
searches. The brain-like information processing system is 
expected to be a new approach as the adaptable system 
on behalf of the pattern matching methods. The focus 
of the recent researches is the system design strategy to 
realize the memorization and association with the interac- 
tion between robots and their environment. In this paper, 
we develop the new approach to deal with the humanoid 
whole body motion using nonlinear dynamics. 

Because the whole body motion of the humanoid robots 
consists of the many joint angle data, it requires much 
computation quantity to deal with some motions. The i'e- 
duction and the symbolization of the whole body motion 
are necessary. In this paper, we propose a reduction and 
symbolization method of the whole body motion based on 
the principal component analysis[ill using singular value 
decomposition. 

On the other hand, since Freeman showed the dynam- 
ical phenomenon in organisms such as entrainment and 
chaos, which exist in the rabbit olfactory[I, 2, 3], some re- 
searchers have tried to realize the dynamics based brain- 
like information processing system. These systems have 
been mainly developed using a neural network configu- 

ration. However, because the neural networks are used 
as the black-box tool, it is difficult to add new functions 
to ah'eady designed networks. Nakamura and Sekiguchi 
tried to develop the information processing system using 
chaotic dynamics[6, 7]. They designed the control algo- 
rithm for the mobile robot using entrainment and syn- 
chronization of the robot dynamics and environlnent dy- 
namics based on Arnold differential equation. 

In this paper, we develop the dynamics based information 
processing system to handle the humanoid whole body 
motion. The nonlinear dynamics memorizes, generates 
and transits humanoid whole body motions based on the 
entrainment and detrainment phenomenon with polyno- 
mial representation. Some design methods of the nonlin- 
ear dynamics that has an attractor using the Lyapunov 
function have been proposed [8]~[10]. In our method, the 
dynamics is defined as the vector field in the N dimen- 
sional space and it has an attractor to any closed curved 
line. By changing the vector field configuration, the dy- 
namics behavior is changeable• 

Using the proposed methods of the motion reduction and 
dynamics based information processing system, we inte- 
grate the whole body motion generator for the humanoid 
robot with 20 degree-of-freedom. 

2 M o t i o n  reduct ion  and symbol i za t ion  

The reduction of the whole body motion means the sym- 
bolization of the motion. By the mapping function and 
its inverse function, the whole body motion is reduced to 
the symbol and restored fl'om symbol. Consider the hu- 
inanoid robot with n degree-of-freedom. The humanoid 
motion data Y is defined as follows. 

y l [1 ]  y [2] . . .  

z - . . . ( 1 )  
• 

y n [ 1 ]  y n [ 2 ]  . .  yn[ ] 

For example, y~[k] menas the angles of each joints. By 
the singular value decomposition of Y 

r -  u s v  ( 2 )  
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U - [  U~ U.) ] (3) 

S - [  S* $2] (4) 

S 2 - d i a g {  S~+l s~+2 . ' .  s~ } (6) 

[ v5 vF ] (7) 

if s~ >> S~+l is satisfied, Y is reduced to the r dimensional 
motion T~q T as follows. 

Y -  FV~ (8) 

-~ -- U1 S1 (9) 

Here, U1 E R n×~, V1 r E 1:l ~×~. F is the mapping func- 
tion for the symbol and whole body motion. This result 
shows that  

1. The whole body motion Y that  represents a curved 
line in n dimensional space, is symbolized by a 
curved line V1T in the r dimensional space. If yi[k] 
(i = 1, . . .  n, k = 1, . . .  m ) i s  the periodic se- 
quence, Y and V1T mean the closed curved lines M 
and C respectively. 

2. By checking the singular value si (i = 1, 2, . . . ,  n), 
the appropriate  r is selected. 

3. The first column vector of V1 is the principal coin- 
ponent of the motion Y, the second column vector 
is the second principal component.  

4. The inverse function of F is s ~ l u  T 

3 D e s i g n  of  t h e  d y n a m i c s  b a s e d  i n f o r m a t i o n  
p r o c e s s i n g  system 

3.1 D y n a m i c s  a n d  b r a i n - l i k e  i n f o r m a t i o n  process- 
ing system 
The human does not remember  the time sequence data 
of the joint angle respect to the whole body motion. The 
motions are symbolized and selected appropriately based 
on the internal state of our brain and input sensor signal. 
We explain this process and phenomenon corresponding 
to the dynamics. Consider the following discrete time 
dynamic equation. 

x[k + 1] - x[k] + g(u[k], x[k]) (10) 

x E R N is the state vector and u E /:~L is the input 
signal, x[k] moves in the N dimensional space. If this 
dynamics has a t t ractor  to one closed curved line C, x[k] is 
entrained to C with an initial condition x0 with u[k] = O. 
Suppose that  the C corresponds to the reduced joint angle 
V1T in equation (8). C means the symbol of the humanoid 
motion M. The time sequence data  of x[k] yields that  of 

humanoid joint angles by mapping function F in equation 
(9), which means the dynamics memorizes and generates 
the humanoid whole body motion. 

Suppose the dynamics in equation (10) has some attrac- 
tors and transits to each at t ractors  by the input signal 
u[k], which means the motion transit ion of the humanoid 
robot  based on the input sensor signal. 

In this section, we design the dynamical system that  has 
some at t ractors  C and transits to each at t ractors  to han- 
dle the humanoid motions M. 

3.2 D e s i g n  o f  t h e  n o n l i n e a r  d y n a m i c s  
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F i g u r e  1" Time sequence data  and closed curved line 

Consider the reduced whole body motion in N degree- 
of-freedom. The time sequence data of each degree-of- 
freedom is set as ~i[k] (i - 1, . . .  N, k - 1, . . .  m). 
Assuming the t ime sequence data  is periodic, ([k] 

~ [ k ] - [ ~ l [ k ]  ~2[k] " "  ~x[k] ] T (11) 

consists the closed curved line E in the N dimensional 
space. 

Z =  [~[1] ~[2] . . .  ~[m] £[1] I (12) 

Figure 1 shows the simple case of N - 2. Two time se- 
quences ~cl [k], ~c2 [k] construct  the closed curved line in the 
2 dimensional space. In this paper,  we design a nonlinear 
dynamics 7) that  has a t t rac ter  to this closed curved line 
with the following formulation. 

7) • x[k + 1 ] -  x[k] + f (x[k] )  (13) 

The design algorism is as follows. 
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S t e p  1 Draw the closed curved line C in equation (12) 
in the N dimensional space. 

S t e p  2 Define the vector field S(v/~) on the point ~/i 
which is in domain D in the N dimensional space 
according to the following algorism (refer to figure 
2). 

~.[k] 

; [ k + l ]  

4k+1]- ~[k] 

Tli 

F i g u r e  2" Vector definition 

f ( n i )  = (~,[k + 1] - ~,[k]) + -)'i[k] (14) 

~,[k] - a rg mjn IIn, - ~[k]ll (15) 

Because n~ = t~,[k] + 6[k], the sufficiency of that  
the closed curved line becomes the at t ractor  of the 
dynamics is 

116[S{] + 7~[S{]II < 116[k + 1311 (16) 
By satisfing this condition, 6[k] -+ 0 at k -+ cx~. 

S t e p  3 On the points r/z , r/2 , . . . ,  r/m in the domain D, 
define the vectors f ( • l ) ,  f (n2) ,  " ", f (nrn)  shown 
in figure 3 

" i  -- [ 77il /~i2 "'' ' i N  IT (18) 

Pq aij are constants. It is easy to calculate f (x[k])  by 
the least square method as follows. 

+(a;~) - F H  # 

F - - [  f ( ~ l )  

~11 

H - , ~ f i _ l ~  

1 

f( ,~)  " f ( , m ) ]  
'/72/1 " ' '  ' f ro1 

~N • . . Tim N 
,~71,:: ... G-~ ~,m: 

" • • 1 

(19) 

(20) 

(21) 

is the constant matrix. The domain D is the at t racted 
region, which means the point x[k] inside D is entrained 
to C at k -+ oc. If (I) gives the right approximation of 
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F i g u r e  4: Motion of the nonlinear dynamics 
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F i g u r e  3: Definition of the vector field 

S t e p  4 Obtain the nonlinear function f(x[k])  that  ap- 
proximate J'(rt¢) by using the polynomial approxi- 
mation of x~ as follows• 

l l n 

f ( r k ) -  E E a(PlP2""P ,,) H rh~ j (17) 
P : 0  P l , ' ' ' , P n  j = l  

E p k  -= P 

P k  : p o s i t i v e  i n t e g e r  

the defined vector field, we obtain the nonlinear dynamics 
that  has an at t ractor  to the closed curved line C. Figure 
4 shows the motion of the designed nonlinear dynamics. 
'+ '  means the initial condition of x[0]. It is entrained to 
C. This result shows that  the designed dynamics memo- 
rizes the time sequence data  t~[k] (k = 1, 2, . . .  m) and 
generate the whole body motion. 

3.3 Set  of  t h e  i n p u t  s igna l  
The designed dynamics D in equation (13) moves au- 
tonomously. From the initial state condition x[0] in the 
domain D, it converges to C. In this section, we set the 
input signal to the designed dynamics. By adding an- 
other time sequence u[k] (E 1{ L, k - 1, 2, .•. , M), the 
dynamics is represented as follows. 

A 

7:) • x[k + 1] - x [ k ]  + 9 ( u [ k ] ,  x [ k ] )  ( 2 2 )  

By changing E in equation (12) as 

~ [ till] 
"-" ([i] 

tt[k] " given 

It[2] . . .  I t [M ]  #.z[1] 
{ [2] . . .  { [ M ]  {[1] (23) 
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9(u[k],x[k]) is calculated by the same algorism as 
f(x[k]). Figure 5 shows the motion of the dynamics with 
1 dimensional input u[k]. The input u[k] is changed from 
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Figure  5" Motion of the nonlinear dynamics with the input 
signal 

A 

one signal to #[k] in time k - k. The dynamics is en- 
trained to C after going around in the space according 
to the change of input. This result means that the input 
signal changes the structure of the nonlinear dynamics by 
changing the vector field g(u[k],x[k]), and entrains the 
dynamics to C. 

3.4 D y n a m i c s  w i th  m u l t i  a t t r a c t o r s  
We modify the dynamics D so that it has some attractors 
and transits to each attractors. The nonlinear dynamics 
is re-written as follows. 

A 

D w • x[k + 1] - x[k] + w(x[k])g (u[k], x[k]) (24) 

w(x[k]) is the weighting function defined as f o l l o w s .  

1 
w(x[k]) - I- i + exp{a(w(x[k]) -  1)} (25) 

~(~[~]) _ (~r[~]_  xor)O(~[~]_ Xo) (~6) 

a is a constant. Q and Xo define the following ellipsoid 
E. 

( xT[k] -  x f ) O ( x T [ k ]  - Xo) - 1 (27) 

Xo is the center of the ellipsoid, Q is the positive definite 
metrics. Equation (25) means that if x[k] is inside the 
ellipsoid in equation (27), the weighting function is 1. 

/ "  "IL) 

Based on the dynamics 2)+ (i - 1, 2, . . .),  we design 
the nonlinear dynamics 7) which has some attractors as 
follows. 

~) • x[k + 1 ] -  x[k] + E w+(x[k])9~(u[k], x[k]) 
i 

(~8) 

This configuration means that the vector field that defines 
an attractor is effective in the ellipsoid. One vector field 
defined by 9+(u[k], x[k]) dose not have influence to other 
attractors. Because the vector fields is defined by the 
sum of 9+(u[k], x[k]) surrounded by the ellipsoid E+, it is 

easy to add the new attractor. The state x[k] moves to 
some attractors in term of the input signal u[k]. Figure 
6 shows the designed dynamics that has three attractors 
in the 2 dimensional space. By the 1 dimensional input 
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Figure  6: Designed three attractors and dynamics 

u[k], the dynamics moves in the space attracted to the 
closed curved lines. 

3.5 R e c o g n i t i o n  of  se l f  m o t i o n  
The designed dynamics in equation (22) is modified as 
follows. 

zs. [~[k+i]]-[~[ k] 
~[k + i] ~[k] + h(X[k]) (29) 

The vector field h is calculate by the same ways as J' and 

l _ ,=  ~,.==,-+:-==--:=~-~ t 
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Figure  7: Recognition of the input signal 

g. Because ~,[k + 1] is the prediction of the u[k + 1], this 
dynamics recognizes which closed curved line the state 
vector is attracted by comparing u[k + 1] and ~[k + 1]. 
Figure 7 shows the recognition index of the attraction. 
The vertical axis is the recognition index (RI) that is 
defined 

1 ([[~[k + 1 ] -  u[k + 1][[ k a) (30) 
RIi - 0 ( [ [ ~ [ k + l ] - u [ k + l ] [  I < a )  

The upper figure, the middle figure and the lower fig- 
ure show the recognition of u+[k] (correspond to T)i, 
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i = 1, 2, 3) respectively. By checking RIi, the humanoid 
recognizes which motion it takes. 

4 G e n e r a t i o n  of the whole body  mot ion  

4.1 Whole  body  mot ion  of the humanoid  robot 
In this section, we design the humanoid whole body mo- 
tion using the dynamics based information processing sys- 
tem. Figure 8 shows the humanoid robot (FUJITSU Hu- 
manoid HOAP-1) that has 20 degree of freedom. We 

3 
10. a 

0i 
-2 ..! 

-S .i 

6 ~ '  -\ 
4 : ~ ' \  

"o -5 
o lo : 

Figure 10: Motion of the dynamics 

line, the humanoid motion is as same as figure 9, and only 
the transition motions are shown. The continuous tran- 
sition is generated. 

Figure 8: Humanoid robot HOAP-1 

design the "walk" motion and "squat" motion. Figure 9 
shows the original motion. This humanoid robot is not 
grounded. Because the dynamic based information pro- 
cessing system yields only the time sequence of the joint 
angle, the feedback controller that stabilizes each motions 
should be implemented. 

4.2 Des ign  of the  d y n a m i c s  
From the "walk" motion Yw E R 2° and "squat" motion 
Ys E R 2°, we obtain the reduced motions V~, T C R 3, 
~T E R 3 in three dimensional space. 

Based on the reduced motion, we design the dynamics 
based on the following equation 

x[k + 1 ] -  x[k] + Z wi(x[k]) f i(x[k]) 
i - - -  "112 ~ S 

+ Z KiOi(x[k]) (31) 
i -" - ' l l .~  ~ S 

= 5(x  - (32) 

By changing Kw and Ks, the humanoid transits its mo- 
tion. 3 is constant. X~, and X~ mean the center of re- 
duced closed curved line "walk" and "squat" respectively. 
Figure 10 shows the motion of the dynamics. FroIn the 
initial position, the dynamics is entrained to the walk mo- 
tion (arrow 1), entrained to squat motion (arrow 2) and 
finally entrained to walk motion again (arrow 3). 

4.3 Mot ion  of the humanoid  robot 
Figure 11 shows the generated humanoid motion. Be- 
cause while the dynamics is attracted to the closed curved 

5 Conclusions 

In this paper, we propose the motion reduction method 
and the brain-like information processing that realizes 
the memorization and generation of the humanoid whole 
body motion using the nonlinear dynamics with the poly- 
nomial configuration. The results of this paper are as 
follows. 

1. We propose the motion reduction method using 
the principal component analysis based on singu- 
lai value decomposition. 

2. We propose the design method of the nonlinear dy- 
namics that has an attractor to the N dimensional 
closed curved line with polynomial configuration. 

3. Using the proposed method, the whole body hu- 
manoid motion is generated. 
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