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Abstract

For the development of the intelligent robot with many
degree-of-freedom, the reduction of the whole body mo-
tion and the implementation of the brain-like information
system is necessary. In this paper, we propose the re-
duction method of the whole body motion based on the
singular value decomposition and design method of the
brain-like information processing system using the nonlin-
ear dynamics network with the polynomial configuration.
By using the proposed method, we design the humanoid
whole body motion that is caused by the input sensor
signals.
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1 Introduction

The robot intelligence has been discussed in many re-
searches. The brain-like information processing system is
expected to be a new approach as the adaptable system
on behalf of the pattern matching methods. The focus
of the recent researches is the system design strategy to
realize the memorization and association with the interac-
tion between robots and their environment. In this paper,
we develop the new approach to deal with the humanoid
whole body motion using nonlinear dynamics.

Because the whole body motion of the humanoid robots
consists of the many joint angle data, it requires much
computation quantity to deal with some motions. The re-
duction and the symbolization of the whole body motion
are necessary. In this paper, we propose a reduction and
symbolization method of the whole body motion based on
the principal component analysis[11] using singular value
decomposition.

On the other hand, since Freeman showed the dynam-
ical phenomenon in organisms such as entrainment and
chaos, which exist in the rabbit olfactory[l, 2, 3], some re-
searchers have tried to realize the dynamics based brain-
like information processing system. These systems have
been mainly developed using a neural network configu-
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ration. However, because the neural networks are used
as the black-box tool, it is difficult to add new functions
to already designed networks. Nakamura and Sekiguchi
tried to develop the information processing system using
chaotic dynamics[6, 7]. They designed the control algo-
rithm for the mobile robot using entrainment and syn-
chronization of the robot dynamics and environment dy-
namics based on Arnold differential equation.

In this paper, we develop the dynamics based information
processing system to handle the humanoid whole body
motion. The nonlinear dynamics memorizes, generates
and transits humanoid whole body motions based on the
entrainment and detrainment phenomenon with polyno-
mial representation. Some design methods of the nonlin-
ear dynamics that has an attractor using the Lyapunov
function have been proposed [8]}~[10]. In our method, the
dynamics is defined as the vector field in the N dimen-
sional space and it has an attractor to any closed curved
line. By changing the vector field configuration, the dy-
namics behavior is changeable.

Using the proposed methods of the motion reduction and
dynamics based information processing system, we inte-
grate the whole body motion generator for the humanoid
robot with 20 degree-of-freedom.

2 Motion reduction and symbolization

The reduction of the whole body motion means the sym-
bolization of the motion. By the mapping function and
its inverse function, the whole body motion is reduced to
the symbol and restored from symbol. Consider the hu-
manoid robot with n degree-of-freedom. The humanoid
motion data Y is defined as follows.

yl[i] yl[gl y1{m]
_ yz.[ ] y‘z-[ ] yz[.m] W
yalll wnl2] o yalm)

For example, y;[k] menas the angles of each joints. By
the singular value decomposition of ¥

Y =UsvT (2)
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if , > s,.1 is satisfied, Y is reduced to the r dimensional
motion V| as follows.
Y = FV{ ®)
F=US% (9)

Here, U; € R™*", VT € R™*™. F is the mapping func-
tion for the symbol and whole body motion. This result
shows that

. The whole body motion Y that represents a curved
line in n dimensional space, is symbolized by a
curved line V7 in the r dimensional space. If y;[k]
(i=1, - n, k=1, --- m) is the periodic se-
quence, Y and V;7 mean the closed curved lines M
and C respectively.

. By checking the singular value s; (i = 1, 2, - -+, n),
the appropriate r is selected.

. The first column vector of 17 is the principal com-
ponent of the motion Y, the second column vector
is the second principal component.

. The inverse function of F is S;UT

Design of the dynamics based information
processing system

3.1 Dynamics and brain-like information process-
ing system
The human does not remember the time sequence data
of the joint angle respect to the whole body motion. The
motions are symbolized and selected appropriately based
on the internal state of our brain and input sensor signal.
We explain this process and phenomenon corresponding
to the dynamics. Consider the following discrete time
dynamic equation.

zlk + 1] = z[k] + g(ulk], z[k]) (10)
x € R" is the state vector and v € R is the input
signal. x[k] moves in the N dimensional space. If this
dynamics has attractor to one closed curved line C, x[k] is
entrained to C with an initial condition o with u[k] = 0.
Suppose that the C corresponds to the reduced joint angle
VT in equation (8). C means the symbol of the humanoid
motion M. The time sequence data of x[k] yields that of
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humanoid joint angles by mapping function F' in equation
(9), which means the dynamics memorizes and generates
the humanoid whole body motion.

Suppose the dynamics in equation (10) has some attrac-
tors and transits to each attractors by the input signal
u[k], which means the motion transition of the humanoid
robot based on the input sensor signal.

In this section, we design the dynamical system that has
some attractors C and transits to each attractors to han-
dle the humanoid motions M.

3.2 Design of the nonlinear dynamics
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Figure 1: Time sequence data and closed curved line

Consider the reduced whole body motion in N degree-
of-freedom. The time sequence data of each degree-of-
freedom is set as &[k] (i =1, -+ N, k=1, -+ m).
Assuming the time sequence data is periodic, £[k]

gk = [ &k &lk] evlk] 17 (1)

consists the closed curved line Z in the N dimensional
space.

==& €2 &m] &1 ] (12)

Figure 1 shows the simple case of N = 2. Two time se-
quences &[], &2[k] construct the closed curved line in the
2 dimensional space. In this paper, we design a nonlinear
dynamics D that has attracter to this closed curved line
with the following formulation.

D zlk+ 1] = z[k] + f(z[k])

The design algorism is as follows.

(13)



Step 1 Draw the closed curved line C in equation (12)
in the IV dimensional space.

Step 2 Define the vector field f(n,) on the point n,
which is in domain D in the N dimensional space
according to the following algorism (refer to figure
2).

EJk+1] "o 1K

Efkr1]- 60K

B[A]

Figure 2: Vector definition

f(n) = (&l + 1] =& [k]) + (k] (14)

€,k = argmkinllm — &[K]1] (15)
&[]

Because n; = &, [k] + 6[k], the sufliciency of that
the closed curved line becomes the attractor of the
dynamics is

HO[k] + [kl < 116[k + 1]l (16)
By satisfing this condition, 6[k] — 0 at k — oo.

Step 3 On the points 1y, n,, -+, N, in the domain D,

define the vectors f(n,), f(ny), ---, f(n,,) shown
in figure 3

Figure 3: Definition of the vector field

Step 4 Obtain the nonlinear function f(x{k]) that ap-
proximate f(n;) by using the polynomial approxi-
mation of x; as follows.

I

I n
Fm) =32 X e [T 07)

P=0 p1, " .Pn

Y-

p) ¢ positive integer
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nin " (18)

af] are constants. It is easy to calculate f(x[k]) by
the least square method as follows.

m = [ i1 T2

®(a)) = FH? (19)
F=[f(m) f(ny) f(n.,) ] (20)
[ 77{1 "151 e 77fn1 i

H = ﬁfN WﬁN T 'flan
= o1 771 -1
M1 T2 7oy 722 N1 TIm2
! 1 1

(21

® is the constant matrix. The domain D is the attracted
region, which means the point z[k] inside D is entrained
to C at k — co. I & gives the right approximation of

— e
= N
=) N
X .
- AN
‘\
-
-3 - - R
4t
-3 2 1 0 1 2 3 4

Figure 4: Motion of the nonlinear dynamics

the defined vector field, we obtain the nonlinear dynamics
that has an attractor to the closed curved line C. Figure
4 shows the motion of the designed nonlinear dynamics.
'+ means the initial condition of #[0]. It is entrained to
C. This result shows that the designed dynamics memo-
rizes the time sequence data £[k] (k=1, 2, --- m) and
generate the whole body motion.

3.3 Set of the input signal

The designed dynamics D in equation (13) moves au-
tonomously. From the initial state condition x[0] in the
domain D, it converges to C. In this section, we set the
input signal to the designed dynamics. By adding an-

other time sequence ulk] (€ RY k=12 .-, M), the
dynamics is represented as follows.
D ¢ alk+ 1] = x[k] + g (u[k], z[k]) (22)
By changing Z in equation (12) as
=_ | #l] B2 - p[M]op(l] (23)
£l1) &[2] .- £M] £[1]
k] : given



(u[k], z[k]) is calculated by the same algorism as
(z[k]). Figure 5 shows the motion of the dynamics with

g
!
1 dimensional input u[k]. The input u[#] is changed from

xlk]

Figure 5: Motion of the nonlinear dynamics with the input
signal

one signal to plk] in time k = k. The dynamics is en-
trained to C after going around in the space according
to the change of input. This result means that the input
signal changes the structure of the nonlinear dynamics by
changing the vector field g(u[k], z[k]), and entrains the
dynamics to C.

3.4 Dynamics with multi attractors

We modify the dynamics D so that it has some attractors
and transits to each attractors. The nonlinear dynamics
is re-written as follows.

DY ¢ zlk+1] = z[k] + w(z[k])g (ulk], z[k]) (24)

w(xfk]) is the weighting function defined as follows.

1
welk) =1 - e L e =y 2
w(zlk]) = (=T [k] - X])Q(x[k] — Xo) (26)

a is a constant. @ and X define the following ellipsoid
E.

(=[] - X5)Q(a"[k] — Xo) =1
Xy is the center of the ellipsoid, @ is the positive definite
metrics. Equation (25) means that if z[k] is inside the
ellipsoid in equation (27), the weighting function is 1.
Based on the dynamics D (¢ = 1, 2, ---), we design
the nonlinear dynamics D which has some attractors as
follows.

D alk+ 1] = x[k] + sz(il?[k])g@(u[k]w[k]) (28)

(27)

This configuration means that the vector field that defines
an attractor is effective in the ellipsoid. One vector field
defined by g,(ulk], z[k]) dose not have influence to other
attractors. Because the vector fields is defined by the
sum of g, (ulk], z[k]) surrounded by the ellipsoid Ej, it is
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easy to add the new attractor. The state a[k] moves to
some attractors in term of the input signal u(k]. Figure
6 shows the designed dynamics that has three attractors
in the 2 dimensional space. By the 1 dimensional input

Figure 6: Designed three attractors and dynamics

ulk], the dynamics moves in the space attracted to the
closed curved lines.

3.5 Recognition of self motion
The designed dynamics in equation (22) is modified as
follows.

o |

The vector field h is calculate by the same ways as f and

ulk + 1]
xzfk + 1]

] + h(X[k]) (29)
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Figure 7: Recognition of the input signal

g- Because t[k + 1] is the prediction of the u[k + 1], this
dynamics recognizes which closed curved line the state
vector is attracted by comparing ulk + 1] and ulk + 1].
Figure 7 shows the recognition index of the attraction.
The vertical axis is the recoguition index (RI) that is
defined

i = {

The upper figure, the middle figure and the lower fig-
ure show the recognition of w;{k] (correspond to D;,

1
0

(lulk +1] —uk + 1]|| = @)

(llGlk + 1] = ulk +1]]| < o) (30)



i =1, 2, 3) respectively. By checking RI;, the humanoid
recognizes which motion it takes.

4 Generation of the whole body motion

4.1 Whole body motion of the humanoid robot

In this section, we design the humanoid whole body mo-
tion using the dynamics based information processing sys-
tem. Figure 8 shows the humanoid robot (FUJITSU Hu-
manoid HOAP-1) that has 20 degree of freedomn. We

Figure 8: Humanoid robot HOAP-1

design the "walk” motion and ”squat” motion. Figure 9
shows the original motion. This humanoid robot is not
grounded. Because the dynamic based information pro-
cessing system yields only the time sequence of the joint
angle, the feedback controller that stabilizes each motions
should be implemented.

4.2 Design of the dynamics

From the ”walk” motion Y,, € R*® and ”squat” motion
Y, € R*, we obtain the reduced motions VI € R?,
VT € R? in three dimensional space.

Based on the reduced motion, we design the dynamics
based on the following equation

alk+1] = zlk] + Y wilzlk])f.(z[k)

+ Y KiOi(z[k]) (31)
Oi(x[k]) = 6(X7 — x[k]) (32)

By changing K, and K, the humanoid transits its mo-
tion. § is constant. X, and X¢ mean the center of re-
duced closed curved line ”walk” and ”squat” respectively.
Figure 10 shows the motion of the dynamics. From the
initial position, the dynamics is entrained to the walk mo-
tion (arrow 1), entrained to squat motion (arrow 2) and
finally entrained to walk motion again (arrow 3).

4.3 Motion of the humanoid robot
Figure 11 shows the generated humanoid motion. Be-
cause while the dynamics is attracted to the closed curved
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Figure 10: Motion of the dynanics

line, the humanoid motion is as same as figure 9, and only
the transition motions are shown. The continuous tran-
sition is generated.

5 Conclusions

In this paper, we propose the motion reduction method
and the brain-like information processing that realizes
the memorization and generation of the humanoid whole
body motion using the nonlinear dynamics with the poly-
nomial configuration. The results of this paper are as
follows.

1. We propose the motion reduction method using
the principal component analysis based on singu-
lar value decomposition.

We propose the design method of the nonlinear dy-
namics that has an attractor to the N dimensional
closed curved line with polynomial configuration.
Using the proposed method, the whole body hu-
manoid motion is generated.
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