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Optimal Design of Nonlinear Series Elastic Actuator for

Minimization of Actuator Power

Nicolas Schmit and Masafumi Okada∗†

In this paper, we propose a methodology to optimize the nonlinear stiffness of nonlinear Series Elastic
Actuators (SEAs). The nonlinear restoring forces of the springs are optimized in order to minimize the
mechanical power of the actuators of the SEAs. We define the cost function as the time average of the
square of the actuator power, and use a 3rd order Hermite interpolation to parameterize the restoring force
of the nonlinear springs. The cost function is optimized using a Sequential Quadratic Programming (SQP)
algorithm. We detail the bounds on the design parameters and the nonlinear optimization constraints. We
show an example of optimal design in the case of a 3 Degree Of Freedom (DOF) manipulator, and in the
last section we show that the optimal nonlinear springs calculated for this manipulator can be realized using
a non-circular cable-spool mechanism.
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1. INTRODUCTION

SEAs are made by coupling an actuator, like a mo-
tor connected to a gear train, in series with an elastic
element [1], as shown in Fig. 1. SEAs can be used
as force actuators, by controlling the displacement of
the spring and knowing its stiffness [2], or be used as
programmable springs, by imposing a particular re-
lationship between the displacement of the actuator
and the displacement of the spring [3].

One of the advantages of SEAs are that they have
low impedance, the motor is isolated from shock loads,
and the effects of backlash, torque ripple, and friction
are filtered by the spring [1]. As SEAs are force con-
trollable actuators, they are safer to use with human
subjects as opposed to direct drive systems that are
position controlled [4, 5]. Another advantage of SEAs
are the ability to store energy in the spring as poten-
tial energy, thus reducing the total energy consump-
tion in the case of cyclic motions such as running [6,
7] and dribbling [8].

A sub-category of SEAs are those that use non-
linear springs. In shock absorption mechanisms, a
hardening spring results in appreciably lower displace-
ments and significantly higher accelerations than a
linear spring, whereas a softening spring might be ad-
visable when the structural element to be protected
is unable to withstand high accelerations and the re-
strictions on the maximum deflections are not very
stringent [9]. Nonlinear springs can be used to create
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a force limiter, so that the stiffness of the joint drops
if the force exceeds a given threshold [10]. SEAs with
quadratic stiffness are used in antagonistic configu-
ration to create Variable Stiffness Actuators (VSAs)
where the force and the stiffness can be tuned inde-
pendently [5, 11, 12].

So far, very few have been said about how to op-
timize the springs of nonlinear SEAs. In [13], the
authors developed a nonlinear SEA where the nonlin-
ear stiffening spring is optimized for the nonlinearities
typically found in revolute-jointed hopping robots. In
[14], the authors proposed a method to optimize the
stiffness of a mechanism in order to to minimize the
energy consumption, but this method is limited to lin-
ear stiffness. In [15], the authors proposed a method-
ology to optimize the design of nonlinear springs that
work in parallel with the actuators, but this method-
ology cannot be used when the springs are in series
with the actuators.

In this paper, we propose a general methodology
to optimize the nonlinear springs of nonlinear SEAs in
order to minimize the mechanical power of the actua-
tors. First, we define the cost function as the time av-
erage of the square of the actuator mechanical power,
then we use an 3rd order Hermite interpolation (piece-
wise 3rd order polynomial interpolation) to express
the restoring force of the nonlinear springs, and fi-
nally we use a SQP algorithm to find the data points
of the interpolation that minimize the cost function.
On a simple example of optimal design of a 3 DOF
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q

Fig.1 Series Elastic Actuator.
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serial manipulator, we show that the use of nonlinear
springs in the SEAs leads to a smaller energy con-
sumption compared to when using linear springs. Fi-
nally, in the last section, we show that the optimal
nonlinear springs calculated for this manipulator can
be realized using a non-circular cable-spool mecha-
nism.

2. Problem statement

We consider a robot with n DOFs. Each joint is
actuated by a nonlinear SEA as shown in Fig. 1. The
output of the motor is connected to the input of the
gear train, the output of the gear train is connected
to one side of a nonlinear spring, and the other side of
the nonlinear spring is connected to the load. u is the
position of the output of the gear train, q is the posi-
tion of the mechanical joint and ξ is the displacement
of the spring.

Assuming that the mass-inertia parameters of the
nonlinear springs are negligible compared with those
of the system elements, the equations of motion of the
robot can be written as

∀i ∈ {1..n},
d

dt

(
∂K

∂q̇i

)

−
∂K

∂qi
+

∂P

∂qi
= −wi(ξi)− ciq̇i

(1)
Where the subscript i means the ith joint, K is the
kinetic energy, P is the potential energy, wi(ξi) is the
restoring force1 of the nonlinear spring of the ith joint,
ci is the viscous friction of the joint and q̇i stands for
the time-derivative of qi. We assume that the joint
trajectory q(t), speed q̇(t), acceleration q̈(t), time-
derivative of acceleration

...
q (t), the viscous friction ci

and the expression of the kinetic energy K and po-
tential energy P are known. We define the function
Gi(t) as

Gi(t) =
d

dt

(
∂K

∂q̇i

)

−
∂K

∂qi
+

∂P

∂qi
+ ciq̇i (2)

As a consequence to (1)

wi(ξi(t)) = −Gi(t) (3)

The function Gi(t) is known, but the functions ξi(t)
(displacement of the spring vs. time) and wi(ξi)
(restoring force of the spring) are unknown.

We want to optimize the nonlinear springs to min-
imize the mechanical power of the actuators. We de-
fine the cost function of the optimization problem as
the sum of the time average of the square of the ac-
tuators’ mechanical power.

C =

n∑

i=1





1

T

∫ T

0

(wi(ξ(t))u̇i(t))
︸ ︷︷ ︸

actuator power

2
dt




 (4)

1We use the word “force” to design either a force in the case
of a prismatic joint or a torque in the case of a revolute joint.
Indeed, the equations are the same for prismatic and revolute
joints.

Using the notations of Fig. 1, u̇i(t) is obtained as

u̇i(t) = q̇i(t)− ξ̇i(t) (5)

By taking the time derivative of (3), we obtain

w′
i(ξi(t)) ξ̇i(t) = −Ġi(t) (6)

where w′
i(ξi) stands for dwi(ξi)

dξi
. We assume that the

stiffness of the nonlinear springs is strictly positive2

(w′
i(ξi) > 0). Substituting (3), (5), (6), in (4), we

obtain

C =
n∑

i=1




1

T

∫ T

0

G2
i (t)

(

q̇i(t) +
Ġi(t)

w′
i(ξi(t))

)2

dt



 (7)

3. Parameterization of the optimization

problem

3.1 Expression of the cost function with the

normalized restoring force

We consider the normalized spring displacement ξi
and normalized restoring force wi(ξi). ξi and wi(ξi)
are mapped to ξi and wi(ξi) respectively by the rela-
tionships

ξi = Ξiξi (8)

wi(ξi) = wi,min + (wi,max − wi,min)wi

(
ξi
)

(9)

where

wi,min = min
t∈[0,T ]

(−Gi(t)) (10)

wi,max = max
t∈[0,T ]

(−Gi(t)) (11)

and Ξi is the displacement range of the ith nonlinear
spring. Both ξi and wi(ξi) are dimensionless and take
their values between 0 and 1. Since we assumed in
Section 2. that the stiffness of each nonlinear spring is
strictly positive, wi(ξi) is a monotonically increasing
function. Furthermore, (9) imposes

wi(0) = 0 (12)

wi(1) = 1 (13)

By taking the derivative of (9) with respect to ξi, we
obtain

w′
i(ξi) =

wi,max − wi,min

Ξi
w′

i

(
ξi
)

(14)

where w′
i(ξi) stands for dwi(ξi)

dξi
. Since wi(ξi) is a

monotonically increasing function, it is invertible:

ξi(t) = w−1
i (wi) (15)

2During the optimization, we impose a constraint on the
design parameters of the springs so that the stiffness is strictly
positive. See Section 4.1 for the calculation of this constraint.
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Where w−1
i (•) stands for the inverse function of wi(•).

From (9), wi is calculated as

wi =
wi − wi,min

wi,max − wi,min
(16)

We successively substitute (14), (15), (16) and (3) in
(7), and obtain

C =

n∑

i=1

[

1

T

∫ T

0

G2
i (t) (q̇i(t) + ΞiHi(t))

2
dt

]

(17)

with

Hi(t) =
Ġi(t)

(wi,max − wi,min)w
′
i

(

w−1
i

(
Gi(t)+wi,min

wi,min−wi,max

))

(18)

3.2 Parameterization of the normalized

spring force function

wi(ξi) is parameterized using the method pre-
sented in [16]. As mentioned previously, ξi takes
its values in [0, 1]. This interval is divided into N
equal subintervals of length 1/N (ξi is dimensionless).
These intervals define N + 1 nodes:

zj =
j − 1

N
, j ∈ {1..N + 1} (19)

A 3rd order polynomial is used to represent the force
wi(ξi) on each subinterval. The value of wi and its
derivative w′

i at the nodes zj are used as design pa-
rameters. For each subinterval, the unique 3rd order
polynomial is defined that has values (fi,j , fi,j+1) and
derivatives (si,j , si,j+1) at the end points of [zj , zj+1).
This definition allows the normalized restoring force
any point z = zj +

ρi

N in [zj , zj+1) to be written as

wi(ξi)
ξi∈[zj,zj+1)

=αi fi,j+1 + βi fi,j +
γi si,j+1 + δi si,j

N

(20)

where αi, βi, γi, δi are calculated as

αi =ρ2i (3− 2ρi) (21)

βi =2ρ3i − 3ρ2i + 1 (22)

γi =ρ2i (ρi − 1) (23)

δi =ρi(ρi − 1)2 (24)

ρi =N ξi mod 1 (25)

This scheme, called Hermite interpolation, automat-
ically gives continuity of wi(ξi) and its derivative at
the nodes. An example of the interpolation of wi(ξi)
is shown in Fig. 2.

3.3 Calculation of w′
i(ξi) and w−1

i (wi)

In order to calculate H(t), we need the expression
of the functions w′

i(ξi) and w−1
i (wi). By taking the

derivative of (20) with respect to ξi, w
′
i(ξi) is calcu-

lated as

w′
i(ξi)

ξi∈[zj,zj+1)

=N (α′
i fi,j+1 + β′

i fi,j) + γ′
i si,j+1 + δ′i si,j

(26)

with

α′
i =6ρi(1− ρi) (27)

β′
i =6ρi(ρi − 1) (28)

γ′
i =3ρ2i − 2ρi (29)

δ′i =3ρ2i − 4ρi + 1 (30)

ρi is calculated using (25).
To calculate ξi = w−1

i (wi), we first determine the
integer j such as

fi,j 6 wi < fi,j+1 (31)

we substitute (21), (22), (23) and (24) in (20) and
rewrite (20) as

aρ3i + bρ2i + cρi + d = 0 (32)

with the coefficients of the polynomial

a =− 2fi,j+1 + 2fi,j +
si,j+1

N
+

si,j
N

(33)

b =3fi,j+1 − 3fi,j −
si,j+1

N
− 2

si,j
N

(34)

c =
si,j
N

(35)

d =fi,j − wi (36)

Since wi(ξi) is a monotonically increasing function,
the polynomial (32) has a unique real root in [0, 1].
From the root ρi of (32), ξi is calculated as

ξi =
j − 1 + ρi

N
(37)

1
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Fig.2 Parameterization of the normalized restoring
force wi(ξi) using a Hermite interpolation. The value
of wi and its derivative w′

i at the nodes zj are used
as design parameters. On each subinterval, wi(ξi) is
expressed by a third order polynomial uniquely de-
fined by its values and derivatives at the endpoints
of the subinterval.
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So far, we defined for each nonlinear spring three
kinds of design parameters:

• The value of wi(ξi) at the interpolation nodes:
fi,j

• The value of w′
i(ξi) at the interpolation nodes:

si,j

• The displacement range of the nonlinear spring:
Ξi

However, the definition of wi(ξi) imposes fi,1 = 0
and fi,N+1 = 1. Consequently, the vector of design
parameters for the ith nonlinear spring is

yi = [fi,2, ..., fi,N , si,1, ..., si,N+1,Ξi] (38)

In (17) each integral term depends only on the design
parameters of one single spring. Therefore, we can
solve the optimization problem for each DOF one by
one.

∀i ∈ {1..n}, min
yi∈Ωi

{

1

T

∫ T

0

G2
i (t) (q̇i(t) + ΞiHi(t))

2
dt

}

(39)
where Ωi is the set of yi satisfying all the design con-
straints and bounds (defined in next section).

4. Constraints, bounds and initialization of

the design parameters

4.1 Nonlinear constraints to bound the stiff-

ness of the nonlinear springs

In order to control the stiffness of the nonlinear
springs, we add the following nonlinear constraints

∀i ∈ {1..n}, ∀ξi ∈ [0, 1], w′
i(ξi) > w′

min (40)

∀i ∈ {1..n}, ∀ξi ∈ [0, 1], w′
i(ξi) 6 w′

max (41)

The parameters w′
min and w′

max can be chosen by the
designer within the following range

0 < w′
min 6 1 (42)

1 6 w′
max < ∞ (43)

The closer w′
min and w′

max to 1, the more linear the
springs. The constraint 0 < w′

min is critical to ensure
that the inverse function (15) is always defined. Using
(26) to calculate w′

i(ξi), (40) is equivalent to

∀i ∈ {1..n}∀j ∈ {1..N}, max
ρ∈[0,1]

{
ai,jρ

2 + bi,jρ+ ci,j
}
6 0

(44)
with

ai,j =6fi,j+1 − 6fi,j − 3
si,j+1

N
− 3

si,j
N

(45)

bi,j =− 6fi,j+1 + 6fi,j + 2
si,j+1

N
+ 4

si,j
N

(46)

ci,j =
w′

min

N
−

si,j
N

(47)

To express the constraint (44), we calculate the max-
imum of the polynomial ai,jρ

2 + bi,jρ + ci,j on [0, 1].
(44) is equivalent to

∀i ∈ {1..n}∀j ∈ {1..N},Pi,j 6 0 (48)

where the term Pi,j is calculated the following way:

• if ai,j > 0, Pi,j = max(ci,j , ai,j + bi,j + ci,j)

• if ai,j < 0

– if −
bi,j
2ai,j

6 0, Pi,j = ci,j

– if −
bi,j
2ai,j

> 1, Pi,j = ai,j + bi,j + ci,j

– if 0 < −
bi,j
2ai,j

< 1, Pi,j = ci,j −
b2i,j
4ai,j

• if ai,j = 0

– if bi,j > 0, Pi,j = bi,j + ci,j

– if bi,j < 0, Pi,j = ci,j

The constraint (41) can be expressed in a similar way
as (48) by replacing w′

min with w′
max in (47) and re-

placing ai,j with −ai,j , bi,j with −bi,j , and ci,j with
−ci,j in the calculation of Pi,j .

Since (40) and (41) constrain the normalized
restoring force, these constraints are independent of
the displacement range and load range of the spring.
Consequently, no initial guess on the displacement
and load range is required to choose the parameters
w′

min and w′
max.

4.2 Bounds

We impose the following bounds on the design pa-
rameters

0 6 fi,j 6 1 (49)

w′
min 6 si,j 6 w′

max (50)

Ξi,min 6Ξi 6 Ξi,max (51)

(49) is imposed by the definition of wi(ξi). (50) is
redundant with (40) and (41) but is required by the
optimization algorithm to know in which interval to
look for the si,j . The parameters Ξi,min and Ξi,max

can be chosen by the designer within the following
range, depending on design requirements.

0 < Ξi,min < Ξi,max < ∞ (52)

4.3 Optimization

We use the SQP [17] algorithm of Matlab to find
the vectors of design parameters (38) which elements
belong to the intervals defined in (49), (50), (51)
which minimize the cost function (17) under the con-
ditions (40) (41). Before starting the optimization
algorithm, the design parameters (38) are initialized
with the following values
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• fi,j =
j−1
N

• si,j = 1

• Ξi = Ξi,max

These parameters correspond to linear springs with
the maximum displacement ranges allowed by (51).

5. Example of optimal design

We consider the 3-DOF serial manipulator shown
in Fig. 3. ℓi is the length of link i, hi is the distance
from the origin of the coordinate frame attached to
link i to the link’s center of mass, qi is the angular
displacement of coordinate frame i with respect to
coordinate frame (i − 1) (coordinate frame 0 is the
reference frame), and g is the acceleration of gravity.

We consider the joint trajectory shown in Fig.
4(a). The corresponding path of the end effector is
shown in Fig. 4(b). We calculate the 3 nonlinear
springs (one for each joint) which minimize the cost
function (17). The user-defined parameters, such as
the number of nodes to interpolate the spring restor-
ing force function and the minimum/maximum stiff-
ness are set as shown in Table 1.

In the left column of Fig. 5, we show the torque
profile (torque vs. angular position) of the nonlinear
springs of each joint. The vertical dash-dotted lines
show the location of the interpolation nodes. In the
right column of Fig. 5, we compare the displacement
of the nonlinear spring (blue solid curve), the angu-
lar position of the joint (green dash-dotted curve),
and the angular position of the actuator (red dashed

End effector
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Fig.3 3-DOF serial manipulator.
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Fig.4 Joint trajectory and path of the end effector.

Table 1 User-defined parameters.

Parameter Symbol Value
Time horizon T 20s

Number or nodes to interpolate w′

i(ξi) N 6
Spring min. displacement range Ξi,min 2◦

Spring max. displacement range Ξi,max 70◦

Min. normalized stiffness w′

min tan(2/180π)
Max. normalized stiffness w′

max tan(85/180 π)

curve) versus time. In order to evaluate how much
energy is saved by using nonlinear springs in series
with the actuators, we calculate the average absolute
mechanical power of each actuator using the expres-
sion.

〈|Wi|〉 =
1

T

∫ T

0

|wi(ξ(t))u̇i(t)| dt (53)

Table 2 shows the values of 〈|Wi|〉 in milliwatt for the
three following configurations

• Output of the gear directly connected to the joint
(no spring)

• Optimal linear spring in series with the actuator

• Optimal nonlinear spring in series with the actu-
ator
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(c) Nonlinear spring 2
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(e) Nonlinear spring 3
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Fig.5 Torque profile of the nonlinear springs and an-
gular displacement vs. time.
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Table 2 Average absolute actuator power (milliwatt).
〈|Wi|〉 Joint 1 Joint 2 Joint 3 Total

No spring 75.6 436 11.7 523
Linear spring 61.1 114 11.7 187

Nonlinear spring 52.9 29.2 11.7 93.8

From Table 2 we understand that the use of springs
in series with the actuators significantly reduces the
average mechanical power of the actuators of the
joints 1 and 2, and that better results are obtained
with nonlinear springs. To better understand the ef-
fects of the nonlinear stiffness, we compared in Fig. 6
the speed of the actuator 2 for an optimal linear spring
and an optimal nonlinear spring. We can see that
the average absolute speed (and thus the mechanical
work) is significantly reduced when using a nonlinear
spring. In the case of the nonlinear spring, there is
a speed peak just before t = 10s but this peak does
not significantly contribute to the mechanical work
since, as shown in Fig. 7, it occurs when the torque
of the spring is very low. For the joint 3, however, the
value of 〈|Wi|〉 is nearly the same for the three con-
figurations no spring/linear spring/nonlinear spring.
On Fig. 5(e), we see that the optimization algorithm
set the displacement range of the spring to the mini-
mum value Ξi,min (2◦). A possible explanation is that
for the joint 3 the introduction of a spring in series
with the actuator tends to increase the average actua-
tor power, so the algorithm reduced the displacement
range of the spring to the minimum to make the ac-
tuator as stiff as possible. A spring with negative
stiffness might reduce the actuator power, but this
option is forbidden by the constraint (40).

6. Technical realization of the nonlinear

springs

To realize the nonlinear springs synthesized in Sec-
tion 5., we use the mechanism shown in Fig. 8. This
mechanism consists in a linear spring connected to a
cable wound around a non-circular spool which shape
is calculated so that the mechanism behaves as a non-
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Fig.6 Comparison of the speed of the actuator 2 for
an optimal linear spring and an optimal nonlinear
spring.
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Fig.7 Restoring torque of spring 2.

linear rotational spring with the prescribed torque
profile [16]. According to Table 2, the use of a spring
in series with actuator 3 does not lead to a reduction
in the actuator work. Thus, we realize only the non-
linear springs that are in series with actuators 1 and
2, and consider that actuator 3 is rigidly connected to
its mechanical joint.

Since this mechanism can only handle positive
torques, the nonlinear springs are realized by the an-
tagonistic action of two cable-spool mechanisms. The
first ones realizes the torque profiles of Fig. 9(a) and
Fig. 10(a), calculated by shifting the torque profiles of
Section 5. vertically so that the torque is strictly posi-
tive. A reduction ratio is introduced between the joint
and the spool to adjust the rotation range of the spool.
The second mechanism realizes a constant spring, so
that the antagonistic action of the two mechanisms
achieves the torque profiles of Section 5.. The shape
of the spool synthesizing the shifted torque profiles
are shown in Fig. 9(b) and Fig. 10(b). See [16] for
the design and realization of the constant springs.

7. Conclusions

In this paper, we proposed a general methodology
to optimize the nonlinear springs of nonlinear SEAs in
order to minimize the mechanical power of the actua-
tors. We showed that, depending on the joint trajec-
tory, the use of springs in series with the actuators sig-
nificantly reduces the average power of the actuators,
and that even better results are obtained when the
springs are nonlinear. However for some joint trajec-
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Fig.8 Transmission mechanism with a non-circular
cable spool.
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Fig.9 Realization of spring 1 with a non-circular
spool mechanism.
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Fig.10 Realization of spring 2 with a non-circular
spool mechanism.

tory, no optimal spring can be found that reduces the
actuator power and satisfies the condition of strictly
positive stiffness, as it was the case for the 3rd joint.
Finally, we showed that the nonlinear springs in series
with actuators 1 and 2 of Section 5. can be realized
using an antagonistic setup of non-circular cable spool
mechanisms.

Future work will focus on improving the design
methodology to optimize both the nonlinear springs
and and the joint trajectory.
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