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Abstract
In this paper we present a cable mechanism that realizes a nonlinear rotational spring from a linear transla-
tional spring. The spring is pulled by a cable wound around a non-circular spool, which is rigidly attached to
the joint. The non-circular shape of the spool induces a nonlinear relationship between its angular position
and the torque created by the tension of the cable. Depending on the shape of the spool, various torque–
angle relationships can be realized. We show that for a given nonlinear torque–angle relationship, there is an
explicit expression (closed-form solution) of the shape of the spool that synthesizes this function. First, we
present the geometry of the problem. Then, we derive the methodology to calculate the shape of the spool
to synthesize a prescribed torque–angle relationship. Finally, we verify the design methodology by exper-
iments with three different spools realizing a constant force spring, an exponential softening spring and a
cubic polynomial spring. We discuss the possible sources of errors between the theoretical and experimental
results.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2012
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1. Introduction

Robotic devices used for industrial processes are generally designed with very stiff
links and joints to ensure accurate and high-speed positioning of the end-effector.
However, in the growing field of wearable robotics, rehabilitation robotics, pros-
thetics and walking robots, the implementation of softness in robotic joints has
become mandatory to match the requirements of shock absorption, smooth inter-
action with the user and energy saving. Furthermore, when designing a compliant
joint as the solution to an optimization problem, we could improve the performance
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of the system if we do not restrain to linear stiffness. This is because a nonlinear
load–displacement function offers more design parameters than a linear function
and because the space of linear functions is a subspace of the space of continuous
functions.

Various applications, including (but not limited to) robotics, can benefit from
nonlinear stiffness. In shock absorption devices, a hardening spring can reduce the
stopping distance while a softening spring can be advisable when the structural
element to be protected is unable to withstand high accelerations [1]. In manipula-
tors, a nonlinear spring mechanism can be implemented so that the stiffness of the
link drops abruptly if the external force exceeds a critical force, thus, guarantee-
ing the collision safety [2–4]. In an agonist–antagonist actuation mechanism, when
nonlinear springs are placed in series with the actuators, the stiffness of the mecha-
nism can be modified by a change of the co-contraction of the actuators (parametric
stiffness) [5–8]. In vibration damping, nonlinear springs can be used to create a non-
linear energy sink (NES) capable of absorbing steady-state vibration energy from
the main system over a relatively broad frequency range [9, 10]. Nonlinear stiffness
also plays a crucial role in running/hopping robots [11]. It can improve the energy
efficiency [12, 13] and the stability [14] of the motion. A detailed review of ac-
tuators taking advantage of nonlinear stiffness can be found in Ref. [15]. Finally,
it is worth noticing several attempts to design simultaneously the control law and
the mechanism of controlled multibody systems as the solution to an optimization
problem [16, 17]. Although the methods presented in these last two papers con-
sider only linear stiffness, we could imagine an extension to the design of nonlinear
stiffness.

The implementation of nonlinear stiffness in a robotic device can be mainly
achieved by two ways. The first method is to design the topology of a compliant
link so that it behaves as a nonlinear spring [18, 19]. For some special class of
springs, a closed-form solution of the topology of the link can be derived in order
to synthesize a prescribed load–displacement function [20]. When no closed-form
solution exists, a popular design method is to optimize a finite element model of the
structure [21, 22]. However, in Refs [23–25], the authors proposed a new design
method where the spring is modeled with splines whose parameters are optimized
with a genetic algorithm. The second method to implement nonlinear stiffness is
to connect a linear spring to a nonlinear transmission mechanism. This method has
the benefit of using an off-the-shelf linear spring, but the drawback of the weight
and size of the transmission mechanism. The design of the transmission mecha-
nism can be achieved by optimizing the design parameters (length of links, etc.) of
the mechanism to minimize the error between the prescribed and achieved load–
displacement function [26]. A more accurate but complicated strategy consists in a
direct computation of a part of the mechanism to synthesize exactly the prescribed
load–displacement function. The nonlinearity can result from rollers moving on a
curved surface [27, 28], cams [29, 30] or from a varying-radius shaft placed inside
of a torsion spring [31].
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Figure 1. Transmission mechanism with a non-circular cable spool.

In this paper we present a cable mechanism that realizes a nonlinear rotational
spring from a linear translational spring. The cable, connected to the linear spring,
is wound around a non-circular spool as shown in Fig. 1. The non-circular shape
induces a nonlinear relationship between the angular position of the spool and the
torque created by the tension of the cable at the spool’s axis. Depending on the
non-circular shape, various nonlinear torque profiles can be realized. Compared to
the mechanisms presented in Refs [26, 27, 30], the cable spool mechanism has the
advantage of using very few moving parts. This not only makes the technical real-
ization simpler, but also reduces the erroneous inertial forces that could be applied
to the joint by the moving parts [29]. Indeed, the only parts not rigidly connected
to the mechanical joint or the spring are the cable and the pulley, whose masses are
very small. Note that a similar mechanism was proposed in Ref. [32] for weight
compensation, but without deriving the closed-form solution of the shape of the
spool and without experiments on the accuracy of the synthesis of the nonlinear
spring.

This paper is organized as follows. Section 2 presents the mechanism, the nota-
tions and the list of assumptions. Section 3 details the methodology to derive the
shape of the spool from a prescribed torque profile. We show that this problem has
an exact (closed-form) solution. Section 4 presents the experimental device and the
results of experiments carried out on three different shapes of spool. We discuss the
possible sources of errors between the theoretical and experimental results.

2. Non-Circular Cable Spool System

We consider the mechanism shown in Fig. 1. A linear spring is connected to a cable
that goes through a pulley and is wound around a non-circular spool. The spool
axis is rigidly attached to the axis of the mechanical joint (not shown in Fig. 1).
Rref is the reference coordinate frame, Rspool is the coordinate frame attached to
the spool, O is the axis of the spool (which is also the origin of Rref and Rspool) and
θs is the angle of Rspool with respect to Rref. The pulley P is placed on the x-axis
of Rref at a distance R (>0) from O . T is the point where the cable is tangent to the
spool, � (= TP) is the length of cable between the tangency point and the pulley,
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r (= OT) is the varying radius of the spool, θr is the angular position of r with
respect to Rspool and α is the angle of the cable at the tangency point with respect
to the perpendicular of the varying radius.

As the spool is not circular, the torque τ generated in O by the tension of the ca-
ble is a nonlinear function of the spool’s angular position θs. The synthesis problem
consists in calculating the shape of the spool to synthesize a prescribed torque–
angle relationship τ(θs). In the derivation of the equations of the spool’s contour,
we use the following simplifications:

• The stiffness of the cable is infinite (no stretching).

• The radius of the pulley is null.

• The radius of the cable is null; the real radius of the cable is considered a pos-
teriori (see Section 4).

Furthermore, the origin of θs is defined such that 0 � θs � θs,max.

3. Synthesis of the Non-Circular Spool

3.1. Geometry of the Proposed System

To calculate the shape of the spool, we first translate the prescribed torque–angle
relationship into a kinematic relationship. From the principe of virtual work:

τ(θs)dθs = kq dq, (1)

where q is the displacement of the linear spring with respect to its natural length
and k is the spring constant. Since the tension of the cable must be strictly positive,
we assume that τ(θs) > 0 and q > 0. From (1), we define the function J as:

J (θs) = dq

dθs
= 1

k

τ(θs)

q
. (2)

We integrate (1) to obtain the expression of q:

τ(θs)dθs = 1

2
k d(q2) (3)

2

k

∫ θs

0
τ(u)du = q2 − q2

0 (4)

q =
√

2

k

∫ θs

0
τ(u)du + q2

0 , (5)

where q0 is the displacement of the spring when θs = 0. Substituting (5) in (2), we
obtain:

J (θs) = τ(θs)√
2k

∫ θs
0 τ(u)du + (kq0)2

. (6)
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J (θs) defines the kinematic input/output relationship that the spool must achieve
to synthesize the torque–angle relationship τ(θs). J (θs) can be seen as the transla-
tion of a torque synthesis problem into a kinematic synthesis problem.

As shown in Fig. 1, the spool’s contour is defined in polar coordinates by the
relationship r(θr). Considering that the problem is parameterized by θs, we need to
determine two independent equations between r , θr and θs to solve the problem.

3.2. Tangency Condition

We consider the displacement of the tangency point T for a small variation of θr ,
as shown in Fig. 2. We note δa the distance between T (θr) and T (θr + δθr). Using
the law of cosines, we obtain:

(δa)2 = (r(θr))
2 + (r(θr + δθr))

2 − 2r(θr)r(θr + δθr) cos(δθr) (7)

(r(θr))
2 = (r(θr + δθr))

2 + (δa)2 − 2r(θr + δθr)δa cosϕ. (8)

We substitute (7) in (8) then calculate the Taylor expansion in δθr :

2r

(
dr

dθr

−
√(

dr

dθr

)2

+ r2 cosϕ

)
+ O(δθr) = 0. (9)

By taking the limit of δθr in 0, we obtain:

cosϕ0 =
dr
dθr√

( dr
dθr

)2 + r2
, (10)

where ϕ0 = lim
δθr→0

ϕ. Finally, substituting the relation ϕ0 = π
2 +α in (10), we obtain:

tanα = −1

r

dr

dθr

. (11)

Figure 2. Displacement of the tangency point.
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Equation (11) is called the tangency equation. The angle α can be calculated
using the formula given in the Appendix.

3.3. Conservation of the Total Length of Cable

We note �spool the length of cable wound around the spool, �spring the length of
cable from the pulley to the spring and L the total length of cable. Since the total
length of cable is constant:

dL

dθs
= d�spool

dθs
+ d�

dθs
+ d�spring

dθs
= 0. (12)

We now detail the calculation of the three terms of the right-hand side of (12).

3.3.1. First Term
We write

d�spool
dθs

as:

d�spool

dθs
= d�spool

dθr

dθr

dθs
. (13)

We calculate the second-order Taylor expansion in δθr of (7) and remove the term
dr
dθr

using (11). We obtain:

(δa)2 = r2

cos2(α)
(δθr)

2 + O
(
(δθr)

3). (14)

From (14), we calculate
d�spool

dθr
as:

d�spool

dθr

= − lim
δθr→0

δa

δθr

= − r

cosα
. (15)

Thus, the first term of the right-hand side of (12) is:

d�spool

dθs
= − r

cosα

dθr

dθs
. (16)

3.3.2. Second Term
Using the law of cosines in Fig. 1, � is calculated as:

� =
√

R2 + r2 − 2Rr cos(θr + θs). (17)

The total derivative of � with respect to θs is represented by:

d�

dθs
= ∂�

∂θr

dθr

dθs
+ ∂�

∂r

dr

dθs
+ ∂�

∂θs

=
(

∂l

∂θr

+ ∂l

∂r

dr

dθr

)
dθr

dθs
+ ∂�

∂θs
. (18)

From (17), we calculate the partial derivatives of � with respect to r , θr and θs:

∂�

∂r
= r − R cos(θr + θs)

�
(19)
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∂�

∂θr

= Rr sin(θr + θs)

�
(20)

∂�

∂θs
= Rr sin(θr + θs)

�
. (21)

Substituting (19)–(21) in (18), and using (11) to remove the term dr
dθr

, we obtain:

d�

dθs
= r

cosα

dθr

dθs
+ Rr

�
sin(θr + θs). (22)

3.3.3. Third Term
Since the pulley and the anchor of the spring are fixed, the length �spring + q is
constant. Thus, we obtain from (6):

d�spring

dθs
= − dq

dθs
= −J (θs). (23)

3.4. Calculation of the Explicit Solution

By substituting (16), (22) and (23) in (12), we obtain:

Rr

�
sin(θr + θs) = J (θs). (24)

This is a first constraint relationship between r , θr and θs. We now substitute (17)
in (24), take the square of this equation and write it as:

G = R2r2 sin2(θr + θs)

R2 + r2 − 2Rr cos(θr + θs)
= J 2(θs). (25)

Using (11) to remove the term dr
dθr

, the derivative of this equation with respect to θs
is:

dG
dθs

=
(

∂G
∂θr

− r tanα
∂G
∂r

)
dθr

dθs
+ ∂G

∂θs
= 2J (θs)J

′(θs), (26)

where J ′(θs) stands for dJ (θs)
dθs

. We give the partial derivatives of G :

∂G
∂r

= 2
R3r

�4
sin2(θr + θs)(R − r cos(θr + θs)) (27)

∂G
∂θr

= 2
R2r2

�4
sin(θr + θs)

[
cos(θr + θs)(R

2 + r2) − (
1 + cos2(θr + θs)

)
Rr

]
(28)

∂G
∂θs

= 2
R2r2

�4
sin(θr + θs)

[
cos(θr + θs)(R

2 + r2) − (
1 + cos2(θr + θs)

)
Rr

]
. (29)

Equation (26) should lead to a differential equation on dθr

dθs
. However, the value

of ( ∂G
∂θr

− r tanα ∂G
∂r

) is exactly zero no matter the values of r , θr and θs. Thus, (26)
is reduced to:

dG
dθs

= ∂G
∂θs

= 2J (θs)J
′(θs). (30)
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Substituting (29) in the above equation, we obtain:

R2r2

�4
sin(θr + θs) · [cos(θr + θs)(R

2 + r2) − (
1 + cos2(θr + θs)

)
Rr

]

= J (θs)J
′(θs). (31)

This is a second constraint relationship between r , θr and θs. For a given set of θs,
the spool contour is defined by the set of (r, θr) solution of the system (24) and (31).

We now solve the system (24) and (31) to obtain the explicit solution of the spool
contour. After substituting � using (17), (24) is equivalent to:

R2r2X2 − 2RrJ 2X + (R2 + r2)J 2 − R2r2 = 0, (32)

where X = cos(θr + θs). Note that to clarify the equations, we use the simplified
notation J instead of J (θs). Assuming that 0 < J � r < R, the roots of (32) are:

X = RrJ 2 ± √
	

R2r2

	 = R2r2(R2 − J 2)(r2 − J 2). (33)

Thus, θr is obtained as:

θr = −θs + arccos

(
J 2 ± √

(r2 − J 2)(R2 − J 2)

Rr

)
. (34)

The ± symbol in (34) comes from the two distinct roots of (32). We will show later
that this symbol must be chosen equal to sgn(J ′).

After substituting (17) and (34), (31) is equivalent to:

R2r2
√

1 − ( 1
Rr

(J 2 ± 
))2

(R2 + r2 − 2Rr( 1
Rr

(J 2 ± 
)))2
·
(

r

(
1

Rr
(J 2 ± 
)

)
− R

)

·
(

r − R

(
1

Rr
(J 2 ± 
)

))
= JJ ′, (35)

where 
 = √
(r2 − J 2)(R2 − J 2). After simplifications, this equation is equivalent

to

(R2 + r2 − 2(J 2 ± 
))−3/2[−(J 2 ± 
)2 + (r2 + R2)(J 2 ± 
) − R2r2]
= J ′. (36)

We now define r∗ = √
r2 − J 2 and R∗ = √

R2 − J 2. Equation (36) is equivalent
to:

± r∗R∗

R∗ ∓ r∗ = J ′. (37)



N. Schmit, M. Okada / Advanced Robotics 26 (2012) 235–252 243

Since we imposed the condition r < R, (R∗ ∓ r∗) is positive. Thus, the ± symbol
in (34)–(37) must be chosen equal to sgn(J ′). From (37), the explicit solution of r

is obtained as:

r =
√

J 2(θs) + J ′2(θs)(R2 − J 2(θs))

(J ′(θs) + √
R2 − J 2(θs))2

. (38)

We note that this last equation does not depend on sgn(J ′). The system (34) and (38)
defines the unique explicit solution of the spool contour for a given function J (θs).
For a given set of θs, we first use (6) to calculate J , then we use (38) to calculate the
set of r and finally we use (34) to calculate the set of θr . An important remark is that
a necessary condition so that a solution exists is J � r . Under this condition, the
radius of the spool verifies the relationship J (θs) � r(θs) < R. Furthermore, since
the tension in the cable must stay positive, the objective torque profile τ(θs) must
be strictly positive.

3.5. Example of Design

To illustrate the design methodology, we calculated three different spools realizing
a constant force spring, an exponential softening spring and a cubic polynomial
spring. The shape of the spools is shown in Figs 3a–5a; the prescribed torque–angle
relationship is shown in Figs 3b–5b; the varying radius r is shown in Figs 3c–5c;
and the torsional stiffness of the mechanism is shown in Figs 3d–5d. The spools
are shown at the angular position θs = 0 and rotate counterclockwise when θs in-
creases. The angular displacement range is [0◦,270◦] (identical for all three spools).
As shown in Fig. 5, although the spring is always pulled when the spool rotates
counterclockwise, it is possible to realize a torque profile with a locally negative
stiffness. This is achieved by a sudden drop in the radius r .

3.6. Choice of Design Parameters

In the derivation of the equations of the spool (J (6), r (38), θr (34)), we intro-
duced three design parameters: the spring constant k, the spring preloading (kq0)

and the location of the pulley R. Since the prescribed torque–angle relationship is
embedded in (6), a change of one or several design parameters results in a different
spool shape, but does not affect the torque–angle relationship of the mechanism.
We illustrate this property with a simple example: for each set of design parameters
shown in Table 1, we calculated the spool synthesizing the torque profile shown in
Fig. 5b. The spools are shown in Fig. 6.

The set {k, q0,R} can be chosen to optimize a design criterion, such as min-
imizing the size of the mechanism. However, calculating the set {k, q0,R} that
optimizes a given design criterion is a complicated optimization problem because
the equations of the spool are highly nonlinear, and because the design has to satisfy
complicated geometric constraints to ensure that the contour is convex and without
loops. In this paper, we will not say anything further about the optimization of the
design parameters as this will addressed in a future publication.
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(a) (b)

(c) (d)

Figure 3. Constant force spring. (a) Spool; (b) torque profile; (c) varying radius; (d) torsional stiffness.

4. Experiments

4.1. Description of the Experimental Device

The experimental device is shown in Fig. 7: from the right to the left: the spool,
a torque sensor, a harmonic gear and a handle. Thanks to the high reduction ratio
of the harmonic gear (1:50), the spool can be rotated easily by the experimenta-
tor using the handle. We use a scale printed on the handle to measure the position
of the spool. In this experiment, we neglect the angular error due to the twist of
the kinematic chain (gear + couplings + sensor). Indeed, the torsional stiffness of
the kinematic chain from the handle to the spool is 313 Nm/rad and since in our
experiments the torque at the spool’s axis does not exceed 4 Nm, the maximum an-
gular error is 0.732° (see Table 2 for the stiffness of the transmission components).
The experiments are carried out with the three spools presented in Section 3.5. The
spools are cut in an 8-mm-thick aluminum board using a wire-cut machine tool. In
order to take into account the thickness of the wire, we removed 0.4 mm from the
theoretical radius r . The cable is a steel wire whose diameter is 0.8 mm. We as-
sume the stretching of the cable to be negligible. The linear spring, which consists
of three identical springs in series, has a stiffness constant of 137 N/m. The pulley
has a diameter of 6 mm and is located 130 mm from the axis of the spool.
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(a) (b)

(c) (d)

Figure 4. Exponential softening spring. (a) Spool; (b) torque profile; (c) varying radius; (d) torsional
stiffness.

4.2. Experimental Results

The comparison of the theoretical (solid line) and experimental (x-mark line)
torque–angle relationship is shown in Figs 8a–10a. The experiments consisted in
increasing θs from 0 to 270°, then decreasing θs back to 0°. We subtracted from the
experimental data the gravity moment due to the weight of the spool (calculated as
a function of θs using the mass and location of the center of mass (COM) given in
Table 3 (the coordinates of the COM where calculated numerically by CAD soft-
ware)). The relative torque error is shown in Figs 8b–10b. The average torque error
for the three spools is about 1.5%. The error consists mainly in a hysteresis effect
(higher torque when increasing θs) that might be caused by friction in the ball bear-
ings. This can be easily seen in Fig. 10b. However, in Fig. 9b the error seems to be
correlated with the position of the spool. A possible explanation is a small error in
the preloading of the spring (kq0), which affects the load–displacement function.
To estimate the influence of the preloading on the synthesized torque profile, we
rewrite (2) as:

τ(θs) = F(q)J (θs), (39)
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(a) (b)

(c) (d)

Figure 5. Cubic polynomial spring. (a) Spool; (b) torque profile; (c) varying radius; (d) torsional
stiffness.

where F(q) = kq is the restoring force of the linear spring. For a given design, J is
fixed. (By definition J (θs) = dq

dθs
, which is a kinematic relationship independent of

the preloading.) Thus, from (39), we can easily derive the sensitivity of the torque
profile to an error in the tension of the spring:

∂τ

∂F

∣∣∣∣
J

= J (θs). (40)

A shift in the preloading of the spring δF will shift the torque profile by δτ =
J (θs)δF . The sensitivity depends on the magnitude of J (θs) at a given spool angle
θs. The plot of J (θs) (calculated using (6)) for the three designs is shown in Fig. 11.

With the experimental device presented in this paper, it is not possible to finely
tune the preloading of the spring. In future designs, we plan to add a screw to tune
the preloading in order to increase the accuracy of the synthesized torque profile.

5. Conclusions

In this paper, we proposed a cable mechanism based on a non-circular spool that
synthesizes a nonlinear rotational spring from a linear spring. We showed that for a
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Table 1.
Design parameters

k (N/m) q0 (mm) R (mm)

137 130 130
170 140 100
205 170 70

1233 127 24

(a) (b)

(c) (d)

Figure 6. Spools calculated with the same torque–angle relationship, but different design parameters.
(a) R = 130 mm; (b) R = 100 mm; (c) R = 70 mm; (d) R = 24 mm.

prescribed torque–angle relationship τ(θs), there is an explicit expression (closed-
form solution) of the shape of the spool that synthesizes this function. We derived
the equations of the spool, then verified the design methodology by experiments
with three different spools realizing a constant force spring, an exponential soft-
ening spring and a cubic polynomial spring. The experiments showed that the
prescribed torque–angle relationships where achieved with an average accuracy of
1.5%. This mechanism has the advantage of using very few moving parts, which
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Figure 7. Experimental device.

Table 2.
Stiffness of the kinematic chain

Transmission component Stiffness (Nm/rad)

Torque sensor 498
Coupling (×2) 1.90 × 103

Harmonic gear (1:50) 7.41 × 103

(a) (b)

Figure 8. Constant force spring. (a) Torque vs. spool’s angular position. (b) Relative torque error.

makes it easy to manufacture and reduces the erroneous inertial forces that could
be applied to the joint by moving parts.

Future work will include the development of a compact nonlinear spring unit that
could fit in the ankle joint of a walking robot. We also plain to develop an antag-
onistic spring mechanism that could synthesize a torque profile with both positive
and negative magnitude.
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(a) (b)

Figure 9. Exponential softening spring. (a) Torque vs. spool’s angular position. (b) Relative torque
error.

(a) (b)

Figure 10. Cubic polynomial spring (a) Torque vs. spool’s angular position. (b) Relative torque error.

Table 3.
Inertial characteristics of the spools

Spool no. Mass (g) Coordinates of the COM (mm)

1 172 (11.3, 15.6)
2 226 (19.8, −15.4)
3 233 (14.1, 1.65)
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Figure 11. Sensitivity of the torque profile to a error in the preloading of the spring.
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Appendix: Calculation of α

These expressions can be obtained easily by application of the law of cosines to the
triangle POT in Fig. 1:

cosα = R

�
sin(θr + θs) (A.1)

sinα = R

�
cos(θr + θs) − r

�
(A.2)

tanα = R cos(θr + θs) − r

R sin(θr + θs)
. (A.3)


