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a b s t r a c t

In the densely-populated urban areas, pedestrian flows often cross each other and congestion is caused.
The congestion makes us feel uncomfortable and sometimes leads to pedestrian accidents. To reduce the
congestion or the risk of accidents, it is required to control the swarm behavior of pedestrian flows. This
paper proposes modeling and controlling method of the crossing pedestrian flows. In the social/urban
engineering, it is well known that the swarm behavior with a diagonal stripe pattern emerges in the
crossing area of the flows. This is a self-organized phenomenon caused by the local collision avoidance
effect of the pedestrians. To control the macroscopic behavior of the flows, we utilize this self-organized
phenomenon. Firstly,we propose the continuummodel of the crossing pedestrian flows. In the continuum
model, the dynamic change of the congestion in the diagonal stripe pattern is simulated as the density.
Secondly, the novel control method to improve average flow velocity is proposed based on themodel. The
proposed method utilizes the dynamic interaction between the diagonal stripe pattern and guides, who
are moving in the flows. The authors derive the control algorithm through an analysis on the temporal
and spatial frequencies of the crossing flows. The validity is verifiedwith simulations using the continuum
model. Moreover, we apply the proposedmethod to the particle model, assuming the actual pedestrians.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Congestion is often caused in the densely-populated urban ar-
eas, e.g., station, airport, diagonal crossing, museum, or event sites.
One reason of the congestion is that pedestrian flows cross each
other. For example, pedestrian flows with different destinations
often cross around the ticket gate in the station, as shown in
Fig. 1(a). The congestion makes us feel uncomfortable and leads
to accidents. To reduce the congestion and make pedestrian flows
smoother, two techniques are required: modeling and control al-
gorithm of pedestrian flows. There have been a lot of studies on
modeling of pedestrian behaviors, for application to urban plan-
ning or animation of crowds. In general, the pedestrian behavior
in a crowd is considered to be divided into two types. One is the
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local interaction between pedestrians such as collision avoidance,
which is regarded as the microscopic behavior [1–3]. The other is
global route choice or trajectory planning, which is regarded as
the macroscopic behavior [4–6]. Concerning the microscopic be-
havior, Helbing and Molnár [1] proposed the Social Force Model, in
which the pedestrian movement is represented by a motion equa-
tion considering attracting force to a goal and collision avoidance
force. Berg et al. [2] and Karamouzas [3] proposedmodeling meth-
ods of the collision avoidance behavior with prediction. In addition
to the local collision avoidance, Pettre et al. [4] and Guy et al. [6]
proposed global trajectory planning methods. Pelechano [5] sim-
ulated the pedestrian behavior in the high-densely situation by
combining psychological and geometrical rules with the collision
avoidance effect. While these are multi-agent models, there have
been the cellular automata model [7,8] or continuum dynamics
model [9–11] of the pedestrian behavior. Whereas themulti-agent
model is suitable for realistic simulation, the continuum model is
suitable for congestion analysis because the congestion degree is
calculated as the density.
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Fig. 1. (a) Congestion in a station and (b) crossing pedestrian flows. When two pedestrian flows cross vertically, a diagonal stripe pattern emerges.
In those studies, the swarmbehavior in pedestrian flows is often
focused on, which is the self-organized phenomenon due to the
local interaction between pedestrians. For example, it is known
that a phenomenon called lane formation emerges when two flows
cross in opposite directions. This phenomenon has been simulated
by a lot of studies [1,5,11–13]. Moreover, it is also known that a
diagonal stripe pattern emerges and propagates in the crossing
areawhen two flows cross vertically [14], as shown in Fig. 1(b). This
dynamic phenomenon in the crossing pedestrian flows has been
simulated by [3,8,13].

Concerning the navigation of pedestrians, methods to give
commands to each pedestrian have been proposed [15–17].
However, it is difficult to apply this approach to situations with
uncertainties such that there are unspecified number of people,
it is unknown how many people have a device to receive the
navigation commands, or it is not guaranteed all of them follows
the commands. Although Narumi et al. [18] proposed a guidance
system with a moving image on the wall, their method is limited
to direct guidance to pedestrians. On the other hand, in research
fields of multi-robotics or multi-agent system, the Shepherding
System [19,20] was proposed, in which a large number of agents
are guided to a goal by a limited number of guide robots or
agents. Based on a similar concept, Okada et al. [21] proposed an
evacuation guidance method by a limited number of guides. They
modeled the macroscopic behavior of the evacuee with a velocity
vector field and calculated the optimal position of the guides to
control the macroscopic behavior. Okada et al. [22] proposed a
congestion reducing method in a exhibition hall with the optimal
location of partitions. These approaches are regarded as indirect
control of swarm, dealingwith unspecified number. However, they
focus on a single flow with the steady congestion, and it is difficult
to apply these approaches to the crossing pedestrian flows because
the congestion changes dynamically. To control the crossing flows,
it is important to utilize its swarm behavior which emerges in the
crossing area.

In this paper, we propose modeling and control method of the
crossing pedestrian flows. In particular, a novel approach to control
the swarm behavior by using a limited number of guide robots
is proposed. When guide robots move in the flows, as shown in
Fig. 2, it is expected that pedestrians try to avoid collisions with
the robots. This leads to the dynamic interaction between guide
robots andpedestrians.We control the swarmbehavior byutilizing
this dynamic interaction, without explicit guidance. Hereafter, we
call this method implicit control of swarm behavior. This is a novel
approach integrating robotics and social engineering.

This paper is organized as follows. In Section 2, we present
the particle model of the crossing pedestrian flows. In this model,
the macroscopic behavior of pedestrian flows is represented by a
vector field in a similar way to [21,22]. In order to quantify the
Fig. 2. Implicit control of swarm behavior by guide robots.

dynamic change of the congestion, the continuum model of the
crossing flows is presented in Section 3. In Section 4,we explain the
proposed control method of the swarm behavior. Focusing on the
cyclic phenomenon of the diagonal stripe pattern, we move guide
robots in a cycle and control the flows by utilizing the interaction
between the guide robots and the flows. The control algorithm
to improve the average flow velocity is derived from an analysis
on temporal and spatial frequencies of the crossing flows. Then,
we address the crossing flows control under different conditions
in Section 5. In Section 6, we apply the proposed control method
to the particle model. Finally, we summarize and conclude this
research in Section 7.

This paper is an extension of our previous paper [23]. In addition
to the contents of [23], parameters of the particle model are
identified from measurement data of the actual pedestrians in
Section 2. Moreover, the effectiveness of the control algorithm is
verified by using the obtained parameters and simulating different
situations in Section 5.

2. Particle model of crossing pedestrian flows

2.1. Modeling of macroscopic behavior in pedestrian flow

We consider pedestrian movement in the two-dimensional
space. In a similar way to [21,22], the macroscopic behavior of a
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Fig. 3. Velocity vector field representing themacroscopic behavior in a line-shaped
pedestrian flow.

Fig. 4. Measurement of the walking trajectory of a pedestrian.

pedestrian flow is modeled with a velocity vector field: velocity at
position x is given by the following vector field f (x):

v = f (x) (1)

x =

x y

T
. (2)

Focusing on a line-shaped pedestrian flow as shown in Fig. 3, f (x)
is designed as follows:

f (x) =


v0d (∥n∥ ≤ w0)

v0d + k(∥n∥ − w0)
n

∥n∥
(∥n∥ > w0)

(3)

whered is the unit directional vector of the line, andn is the normal
vector from the position x to the line. w0 and v0 denote the width
of the pedestrian flow and the reference velocity in the flow region,
respectively. k is a magnitude of attracting effect to the flow.
2.2. Modeling of microscopic behavior in pedestrian flow

In this section, we verify the diagonal stripe pattern formation
in the crossing flows by modeling each pedestrian with a particle.
We call this model particle model. Suppose that there are two
pedestrian flows along x- and y-axes. Let fA and fB denote the vector
fields of each flows. The velocity of a particle i in flow A is given as
follows:

vi = fA(xi) −


i≠j

s(∥rij∥)
rij

∥rij∥
(4)

rij = xj − xi (5)

where xi and vi are position and velocity of the particle i, respec-
tively. This model is similar to the Social Force Model [1]. The first
term on the right-hand side of (4) represents the attractive effect of
the destination, and the second term represents a repulsive effect
of the nearby particles (the particle i keeps a distance from nearby
particles). rij is the relative position vector from the particle i to j.
The repulsive effect is modeled with s(r), a sigmoid function de-
fined as follows:

s(r) =
c

1 + exp{a(r − b)}
(6)

where a, b and c are constant values. This function represents Per-
sonal Space [24], where b indicates the radius of the personal space,
and a is a parameter to smooth the boundary between the personal
space and the other. c is a parameter to determine the magnitude
of the repulsive effect, which is a scaling factor between the whole
setting area and the personal space.

The velocity of particles in flow B is given in a similar way.
Note that this is velocity-level modeling, whereas the Social Force
Model is an acceleration-levelmodel utilizing themotion equation.
Considering pedestrian movement with general temporal and
spatial scales, we can assume that each pedestrian velocity reaches
usual walking speed instantaneously. Therefore, we consider the
velocity-level modeling is valid.

2.3. Parameter identification of particle model

We identify the parameters of the repulsive effect given by
(6) by measuring human walking trajectories. As shown in Fig. 4,
the walking motion was recorded by a camera from the ceiling.
We obtained the walking trajectories by tracking each pedestrian
head after the recording. Tau 640 (FLIR Systems, Inc.), an infrared
camera, was used to make the image processing easy.

We measured the walking trajectories when a group of pedes-
trians walk straight, avoiding the collision with a person standing
still in the center. Fig. 5 showswalking trajectories obtained by the
image processing. Let x0 be the position of the person standing still,
and xi[k] be the trajectory data of the i-th pedestrian at time k. The
velocity of the pedestrian vi[k] can be calculated as follows:

vi[k] =
xi[k + 1] − xi[k]

∆t
(7)
Fig. 5. Walking trajectories obtained from image processing.
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where ∆t is the sampling time. On the other hand, vi[k] is given by
the following equation in the particle model:

vi[k] = f (xi[k]) − s(∥ri[k]∥)
ri[k]

∥ri[k]∥
(8)

ri[k] = x0 − xi[k]. (9)

The second term on the right-hand side of (8) is regarded as a func-
tion of the sigmoid function parameters. Therefore, we replace this
term as follows:

g(xi[k], a) = s(∥ri[k]∥)
ri[k]

∥ri[k]∥
(10)

a =

a b c

T (11)

where a is a vector of the sigmoid function parameters. Now, (8) is
replaced by the following equation:

f (xi[k]) − vi[k] = g(xi[k], a). (12)

Considering all pedestrians (i = 1, . . . ,m) and time series (k =

1, . . . , ni), we calculate the parameter a which satisfiesf̂ − v̂ − ĝ
2

−→ min (13)

where

f̂ =

f (x1[1]) · · · f (xm[nm])

T (14)

v̂ =

v1[1] · · · vm[nm]

T (15)

ĝ =

g(x1[1], a) · · · g(xm[nm], a)

T
. (16)

In this paper, we computed a by the Newton–Raphsonmethod, in-
stead of directly solving (13). The parameters of the sigmoid func-
tion were calculated as a = 10, b = 0.8 and c = 2.5. We also
obtained the reference velocity v0 = 1.34 (m/s) from the trajec-
tories.

2.4. Simulation of crossing flows with the particle model

We simulate the crossing pedestrian flows based on the particle
model. Fig. 6 shows a snapshot of the simulation. Particles in
flows A and B were input randomly in x = −15.0, |y| ≤ 7.5
and |x| ≤ 7.5, y = −15.0, respectively. We observed that a
diagonal stripe pattern emerged after two flows have crossed.
This result is consistent with the phenomenon mentioned in [14].
Therefore, it is verified that the modeling of pedestrian flows with
the velocity field is appropriate. Note that the diagonal stripe
pattern slightly changes from hour to hour because the particles
are input randomly.

The particle model is appropriate to model microscopic charac-
teristics of each pedestrian, e.g. age, gender, social relationship and
so on. However, it is difficult to quantify the dynamic change of the
congestion degree in the crossing area because the particle model
is discrete.Whenwe control the swarm behavior, it is important to
quantify macroscopic characteristics of pedestrians. Therefore, we
propose the continuummodel in the following section.

3. Continuummodel of crossing pedestrian flows

3.1. Density calculation based on the continuity equation

We quantify the congestion degree of flow i = A, B as the den-
sity of the continuum ρi. Letting vi =


ui vi

T denote the velocity
Fig. 6. Simulation of the crossing flows with the particle model.

of the i-th continuum, time variation of the flow density is given by
the following continuity equation in a similar way to [10,22]:

∂ρi

∂t
= −ρi


∂ui

∂x
+

∂vi

∂y


−


∂ρi

∂x
ui +

∂ρi

∂y
vi


. (17)

In a similar way to the previous section, suppose that the macro-
scopic behavior of each pedestrian flow i is given by the vector field
fi. Then, velocities of each continuum are given as follows:

vA = fA(x) − k1∇ρA − k2∇ρB (18)
vB = fB(x) − k1∇ρB − k2∇ρA (19)

where ∇ρi represents the following density gradient:

∇ρi =


∂ρi

∂x
∂ρi

∂y

T

. (20)

The second and third terms on the right-hand side of (18) and (19)
are diffusion terms of each continuum, where k1 and k2 are their
coefficients. These terms represent the effect to avoid the collision
with other pedestrians, which is equivalent to the second term on
the right-hand side of (4) in the particle model. Note that this con-
tinuum model given by (17)–(19) is the velocity-level model in a
similar way to the particle model.

3.2. Simulation of crossing flows with the continuum model

We simulated the density variation of the crossing flows based
on the continuum model. Continuity equation (17) was calculated
with the finite volume method. Assuming that pedestrians enter
steadily, boundary conditions of the density were given as follows:

ρA(x, t) = ρA0 (x = −2, |y| ≤ 0.5)
ρB(x, t) = ρB0 (|x| ≤ 0.5, y = −2). (21)

We call ρi0 input density. In this paper, we consider a case of ρA0 =

ρB0 = ρ0 for simplicity. Fig. 7 shows a simulation result of spatial
distribution of density in steady state, setting ρ0 = 14. In the fig-
ure, the white color indicates ρi = 0, and the black color indicates
the highest density. We observed that the diagonal stripe pattern
emerged after the flows crossed. This result is consistent with the
diagonal stripe pattern formation in the actual phenomenon men-
tioned in [14]. Therefore, the validity of the continuum model is
qualitatively verified.Moreover, the advantage of thismodel is that
it is possible to quantify the dynamic change of the congestion de-
gree in the crossing area.
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Fig. 7. Simulation result of the density distribution in the crossing flows with the continuummodel.
0

Fig. 8. Time variation of average velocity of the crossing flows.

3.3. Average flow velocity of the continuum model

In order to evaluate how smooth the pedestrian flows are, we
define an average flow velocity. From the flow velocity vi(x, t) at
position x, we extract an element parallel to the original vector field
fi(x) as follows:

v̂i = fif #i vi (22)

where f #i is pseudo-inverse of fi defined by

f #i = (f Ti fi)−1f Ti . (23)
Using v̂i, we define the average velocity of time t as follows:

v̄i(t) =


ρi∥v̂i∥dx

ρi dx
(i = A, B). (24)

The right-hand side of (24) implies proportionality of the total
amount of flow rate to the density. Fig. 8 shows time variation of
the average velocity in the crossing flows. The two flows collide at
around 100 s and the velocity declines rapidly. After that, the stripe
pattern begins to emerge at 150 s. After 200 s, the stripe pattern
propagates steadily and the velocity recovers.

3.4. Analysis on density and velocity with the particle and continuum
model

In order to verify the validity of the continuum model, we
compared congestion–velocity relationship between the particle
and continuummodel.

Firstly, in the particle model, we calculated the average velocity
when the number of input particles in the total simulation time
was increased. Fig. 9(a) shows the variation of the average velocity
of the particles. When the total input number of particles was 0
to 50, particles moved with the reference velocity v0. As the total
input number of particles increased, the particles collided with
each other more often. Then, when the total input number became
more than about 50, the congestion occurred and the average
velocity decreased rapidly.
(a) Particle model. (b) Continuummodel.

Fig. 9. Variation of the average velocity when the number of input is increased.
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Fig. 10. Modeling of a guide robot and its effect to flows.

Next, in the continuum model, we calculated the average ve-
locity of the crossing flows when the input density ρ0 was in-
creased. Fig. 9(b) shows the variation of the average velocity.When
the input density was smaller than 10, the diagonal stripe pattern
did not emerge and decreasing rate of the average flow velocity
was relatively small. When the input density was larger than 10,
the diagonal stripe pattern emerged in the crossing area and the
average flow velocity decreased rapidly, in a similar way to the
particle model. From the results shown in Fig. 9(a) and (b), we
observed that the characteristics of the particle model did not
coincide well with one of the continuum model when the to-
tal input number of particles was 0–200. Then, the characteris-
tics of the particle model became similar to one of the continuum
model when the total input number of particles increased. There-
fore, the validity of the continuum model was verified because
both the particle and continuummodels had the same congestion–
velocity relationshipwhen the number of particleswas sufficiently
large.

4. Control of swarm behavior in crossing pedestrian flows

4.1. Implicit control of swarm behavior by guide robots

In this paper, we control the swarm behavior in the crossing
pedestrian flows by utilizing dynamic interaction caused by guide
robots moving in the flows. We call this method implicit control
of swarm behavior because the robots do not explicitly guide
pedestrian. We assume that it is possible to measure the position
of robots and remotely control them. In this paper, we derive the
desired position of robots to make the flows smooth.

Suppose that a robot moves in a pedestrian flow. Pedestrians
try to avoid collisions with the robot. As shown in Fig. 10, let xp
denote the position of the robot p. The collision avoidance effect of
the pedestrians is modeled by the following repulsive velocity:

vp = −s(∥rp∥)
rp

∥rp∥
(25)

rp = xp − x (26)

where rp is the relative position from the robot. s(r) is the sigmoid
function defined by (6). In particular, the parameter b defines the
size of a guide robot. Adding the repulsive effect to (18) and (19),
Fig. 11. Cyclic movement of guide robots in the flows.

velocities of the flows are given as follows:

vA = fA(x) − k1∇ρA − k2∇ρB +


p

vp (27)

vB = fB(x) − k1∇ρB − k2∇ρA +


p

vp. (28)

One solution to find an algorithm to move the robots would be
calculating xp from (25) to (28) and (17) so that vA and vB are
increased. However, this calculation is extremely difficult because
we need to solve a second-order partial differential equation with
respect to time and space.

Therefore, considering the self-organized phenomenon in the
flows, we give a rough guideline to move the robots as follows:

1. The self-organized diagonal stripe pattern is regarded as a
nonlinear oscillating phenomenon with temporal and spatial
frequencies. It is known that the entrainment or synchroniza-
tion arises from the interaction between nonlinear oscillators.
Therefore, it is expected that we can change the diagonal stripe
pattern by externally adding a cyclic effect. Therefore, we add
an external effect to the flows bymoving guide robots in a cycle.

2. From the aspect to cost, the less number of robots is the
better. Moreover, the diagonal stripe pattern is a symmetric
phenomenon about the two flows. From those reasons, we
move two guide robots in the flows.

3. The diagonal stripe pattern is generated by the local collision
effect of the flows which propagates to the crossing area. The
local collision is caused at borders of the flows. It is considered
that we can add the robot effect more efficiently by moving
them along the borders.

From the above guideline, we put two guide robots, α and β , in a
cycle as shown in Fig. 11. The positions of the two robots, xα and
xβ , are given as follows:

xα = c + w{1 − cos(2πωGt)}dB (29)
xβ = c + w{1 − cos(2πωGt + π)}dA (30)

where c is the intersection of the flows as shown in Fig. 11, w is
the width of the flow, and ωG is the frequency of the guide robot
movement. Hereafter, we call ωG guide frequency. dA = [1 0]T and
dB = [0 1]T are directional vectors of each flow. Considering that
the density of each flow has the same frequency and the opposite
phase, we set the phases of the robots to be opposite.
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(a) Flow A.

(b) Flow B.

Fig. 12. Time variation of the average flow velocity when the guide robots moved in a cycle. The guide frequency was set to be ωG = 0.055 Hz.
Fig. 13. Relationship between the guide frequency ωG and the average flow
velocity. The input density was set to be ρ0 = 14.

4.2. Velocity analysis of crossing flows

We analyze how the swarm behavior in the flows changes by
the dynamic interaction with the guide robots. First, we analyzed
the average flow velocity when the guide robots moved in a cycle.
For simplicity, the input densities of two flows are set to be equal,
namely ρA0 = ρB0 = ρ0. Fig. 12 shows the time variation of the
average flow velocity when ρ0 = 14 and ωG = 0.055 Hz, for
example. The rapid decrease of the velocity due to collision of the
flows was prevented. The right columns of Fig. 12 show closeup of
steady state between 250 s and 500 s. In both A and B, the average
flow velocity was slightly increased.

Next, we analyzed relationship between the average flow ve-
locity and the frequency of the guide robots ωG. The average flow
velocity in the steady state was simulated changing ωG from 0.050
to 0.095 Hz by 0.001 Hz step size, where the input density was
ρ0 = 14. Fig. 13 shows the result of flow A. The result of flow B
Fig. 14. Relationship between the guide frequency ωG and temporal frequency of
the flows ωG . The vertical axis indicates the difference between ωG and ωF , ∆ω =

ωF − ωG . The input density was set to be ρ0 = 14.

is omitted because it is almost same with one of flow A. In the fig-
ure, the average flow velocity is maximized when ωG0 = 0.062 Hz
(indicated by the dashed line). In general, ωG0 is unknown because
it varies depending on the flow rate. If we can find ωG0 automat-
ically, the swarm behavior can be controlled so that the average
flow velocity is maximized.

4.3. Temporal/spatial frequencies analysis of crossing flows

In order to find ωG0, we analyze the characteristics of the cross-
ing flows phenomenon when the guide frequency ωG is lower or
higher thanωG0. In particular, we focus on temporal and spatial fre-
quencies of the crossing flows. Temporal frequency is computed by
FFT analysis from time-series data of the density at a representa-
tive position, for example, the center position of the crossing area.
LetωF denote the temporal frequency of the flows. From some sim-
ulations, we found that the value ofωF is equal for both flows A and
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Fig. 15. Relationship between the guide frequency ωG and spatial frequency of the
flows νF . The input density was set to be ρ0 = 14.

B. Then, we define the error between ωF and ωG as follows:

∆ω = ωF − ωG. (31)

Fig. 14 shows the relationship between ωG and ∆ω. In the figure,
the dashed line indicates the optimal frequency ωG0. From this re-
sult, the relationship is summarized as follows:

• In ωG < ωG0, ∆ω decreases as ωG increases.
• In ωG ≥ ωG0, ∆ω is almost zero.

Next, we analyze the characteristics of the spatial frequency
of the crossing flows. The inverse of the spatial frequency is
equivalent to the width of the density stripe pattern, which is
computed from spatial distribution of the density. Let νF denote
the spatial frequency. Similar to the temporal frequency, we found
that the value of νF is equal for both flows A and B. Fig. 15 shows
relationship between ωG and νF . From this result, the relationship
is summarized as follows:

• In ωG < ωG0, no obvious relationship is found.
• In ωG ≥ ωG0, νF increases as ωG increases.

The above results were obtained under the condition ρ0 = 14.
Results when the density input is given as ρ0 = 11, 12, 13, 15
are shown in Fig. 16. The upper, middle and lower rows of Fig. 16
show the average flow velocity, ∆ω and νF , respectively. These
results are similar to those shown in Figs. 13–15. We consider
that the average flow velocity is increased by some kinds of
resonance effect between the guide robots and the flows, though
it is qualitative discussion.

4.4. Control algorithm based on temporal/spatial frequencies

From the above discussion, it is possible to find the optimal
frequency ωG0 by adjusting ωG as follows:

1. In the low-frequency area, ωG is increased so that ∆ω becomes
zero.
2. In the high-frequency area, ωG is decreased so that νF becomes
low.

We can switch between these two strategies depending on if ∆ω
is equal to zero or not.

Let iωG denote the guide frequency in the i-th period. From
the temporal and spatial frequencies of the flows, iωF and iνF , we
determine the frequency of the robots in the next period i+1ωG as
follows:

i+1ωG =

iωG + kω∆ω (∆ω ≥ ∆ω0)
iωG + kν(ν0 −

iνF ) (∆ω < ∆ω0)
(32)

where kω and kν are the gains of the temporal and spatial
frequencies, respectively. ν0 is an offset value of the spatial
frequency to prevent ωG from changing rapidly near ωG0. ∆ω0 is
a threshold of ∆ω.

4.5. Simulation of crossing flows control

We simulated the density variation in the flows by applying the
proposed control method. The input density was set to be ρ0 = 14,
and the control parameters were set as follows: kω = 0.08, kν =

0.001, ν0 = 1.0. Fig. 17 shows the average flow velocities, in
which the right column shows closeup of the steady state between
250 and 500 s. We observed that the average flow velocities were
increased by applying the proposed control method. Fig. 18 shows
time variation of the guide robot frequency and the temporal
frequency of the flows.Weobserved that the guide robot frequency
was adjusted so that ∆ω becomes zero. Fig. 19 shows snapshots
of the spatial distribution of the density. White poles indicate the
position of the guide robots. We also observed that the width of
the stripe increased. This is because the spatial frequency was
minimized by the proposed algorithm. Asmentioned in Section 4.3,
the inverse of the spatial frequency is equivalent to the stripe
width. Therefore, minimizing the spatial frequency resulted in
maximizing the stripe width.

5. Crossing pedestrian flows control under different conditions

5.1. Control by a single guide robot

In the previous section, we assumed symmetric situation, which
means input densities of the both flows are equal and time-
invariant. From this point of view, we moved two guide robots in
the flows. In this section, we consider the case that there is a single
guide robot and analyze the effect of interaction between the flows
and the robot.
Fig. 16. Result of the temporal and spatial frequencies analysis.
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(a) Flow A.

(b) Flow B.

Fig. 17. Time variation of the average flow velocity with the proposed control method.
Fig. 18. Time variation of the guide robot frequencyωG and the temporal frequency
of the flows ωF .

In a similar way to Section 4.2, we analyze the relationship
between the average flow velocity and the frequency of the single
robot when removing robot β . The input density was set to be
ρ0 = 14 in a similar way to Fig. 13. The result is shown in Fig. 20,
where white and black circles indicate the velocities of flows A
and B, respectively. The dashed line indicates the result with two
guides, which is shown in Fig. 13. We can observe that the velocity
of A becomes less than B, by removing the robot β . Therefore, at
least two guide robots are required to improve the velocities of
both flows simultaneously.

5.2. Frequency analysis under different input densities

In the above discussion, we supposed that input densities of the
both flows are equal and time-invariant. In the real environments,
however, the input densities are not always equal and constant.
Instead they change dynamically. In this section, we verify that
the proposed control algorithm is applicable to such a situation.
Firstly, we verify that the proposed algorithm is applicable to the
crossing pedestrian flows with different input densities. Fig. 21
shows the result of the temporal/spatial frequencies analysis when
the input densities are given by ρA0 = 15 and ρB0 = 7.5. If
the proposed algorithm is applied, the guide frequency will be
modulated to the frequency indicated by the dashed line in the
figure. In this frequency, the average flow velocity of both flows
are almost maximized. Therefore, it is expected that the proposed
algorithm improves both the flow velocities simultaneously even
though the input densities are different.

5.3. Crossing flows control with changing input densities

We simulated the control of the crossing pedestrian flows with
the input densities changing. In the simulation, a stepwise change
of the input densities was given as shown in Fig. 22. Fig. 23 shows
time variation of the average flow velocities from 250 to 600 s.
We observed that both velocities were improved by applying the
proposed method.

6. Application of the control algorithm to the particle model

6.1. Computation of virtual density from particles

In the proposed control algorithm, we utilize information of the
density distribution, which is continuous quantity. On the other
hand, information of position or number of actual pedestrians is
discrete quantity. Therefore, we need to compute the density from
the position of pedestrians in order to apply the proposed control
method to the actual environments. In this section, we compute
virtual density from the position information of pedestrians.
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(a) t = 50 s.

(b) t = 250 s.

Fig. 19. Simulation result of spatial distribution of density in the flows with the proposed control method.
Virtual density ρ̂(x) at a position x is calculated as follows:

ρ̂(x) =


i

W (∥ri∥, h) (33)

ri = x − xi (34)

where xi is the position of a pedestrian, and ri is the relative
position vector from the pedestrian, respectively. W (x, h) is the
cubic spline function defined by the following equation:

W (x, h) =
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(35)

W (x, h) represents pseudo density distribution set to one particle,
and h specifies its radius.

6.2. Control simulation of crossing pedestrian flows

We applied the proposed algorithm to the particle model and
simulated the control of the crossing pedestrian flows. In the sim-
ulation, we used the parameters identified from the measurement
data of the actual walking trajectories. The parameter b of the
robot, which defines the robot size, was set to be twice as much
as one of pedestrians. Fig. 24 shows a snapshot of the simulation.
Fig. 20. Relationship between the frequency of the guide and the average flow
velocities when there is one guide.

The white and black circles indicate particles of flows A and B,
respectively. The white squares indicate the guide robot α and
β . Fig. 25(a) and (b) show time variation of the average velocity
of each flow. In the figures, the dashed lines indicate the result
described in Section 2.4, which means there is no guide robots
and control. The solid lines indicate results with the guide robots.
Table 1 shows the time average of the values in Fig. 25(a) and (b).
We observed that the average velocities of both flows were in-
creased by applying the control with the guide robots. Moreover,
comparing Fig. 24 with Fig. 6, we observed that the stripe width
became larger by applying the control. This result is consistent
with one of the continuummodel mentioned in Section 4.5. Fig. 26
shows time variation of the density in the crossing area. We ob-
served that the density decreased by applying the control method.
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Fig. 21. Relationship between the frequency of guides and the average velocity
(ρA0 = 15, ρB0 = 7.5).

Fig. 22. Time variation of the input density.
Fig. 24. Snapshot of control simulation of the crossing pedestrian flows.

Table 1
Temporal average velocity (m/s) of the particles.

Flow A Flow B

Without guides 1.11 1.14
With guides 1.20 1.19

7. Conclusion

The results of this paper are summarized as follows:

1. The particle and continuum models of the crossing pedestrian
flowswere proposed. Bothmodelsmakes it possible to simulate
the diagonal stripe pattern phenomenon. In particular, the
continuum model makes it possible to quantitatively evaluate
the dynamic congestion change.

2. Implicit control of swarm behavior in the crossing pedestrian
flows was proposed. Focusing on the nonlinear oscillating
phenomenon of the diagonal stripe pattern, we can change
the swarm behavior by utilizing the dynamic interaction
between guide robots and flows. In this paper, we analyzed the
relationship between frequencies of the guide robots and flows.
From the analysis results, we derived the control algorithm to
improve the average flow velocities.

The proposed control algorithm is valid even when the input den-
sities are different. Moreover, it was validated that we can apply
the proposed algorithm to the particle model by calculating virtual
density. The parameters of the particle model were identified by
Fig. 23. Average flow velocity with the proposed control method when the density varies from hour to hour.
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(a) Flow A. (b) Flow B.

Fig. 25. Time variation of the average velocities in the control simulation.
Fig. 26. Time variation of the density in the crossing area.

measuring the actual pedestrians. Using the obtained parameters,
the validity of the proposed algorithm was observed more clearly
than the result of our previous paper [23], which is that the stripe
width was changed by the control.

The proposed model is homogeneous because we focus on the
macroscopic behavior which emerges in the crossing pedestrian
flows. In the real situations, there is some heterogeneity in the
pedestrian flows because of the individual differences, such as age,
gender or social relationship. We consider that the proposed mod-
eling and control methods are effective when there is a large num-
ber of people and the control is applied for a long period. In this
paper, we considered line-shaped pedestrian flows. The proposed
modeling and control methods can be extended to more compli-
cated situation by designing the velocity vector field based on [22].
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