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Abstract— A novel Kalman filter to estimate the center
of mass (COM) of a Humanoid robot is proposed. In the
conventional works, COM was estimated by some methods.
First one is the kinematics computation based on the mass
property of the robot and the global position and attitude
of the body frame, but those errors degrade the estimation
accuracy. Second is the double integral of COM acceleration
computed by the measured external force. However, its accuracy
suffers from the error accumulation with the integration and
the initial error remains. Third is based on the relationship
between COM and the zero-moment point (ZMP), but it ignores
the torque around COM. Additionally, it only dealt with the
horizontal movement. For those problems, the proposed method
combines those informations in order to improve the accuracy.
Particularly, in order to estimate three dimensional motion of
COM, the proposed method reduces the offset included in the
vertical component by utilizing the interference between the
horizontal and vertical component of COM shown in third
information. Through the simulation, the improvement by the
proposed method is verified.

I. INTRODUCTION

The efficacy of controlling the center of mass (COM)

of a humanoid robot has been widely acknowledged. The

behavior of COM captures the core of the whole body

dynamics, and the idea is utilized in many works[1], [2],

[3] in order to stabilize and maneuver the robot. The current

COM is fed back to the controller at the same cycle as the

control one. A common difficulty is that COM is determined

from the mass distribution of the whole-body configuration,

and thus, cannot be directly measured in principle.

In the previous studies[4], [5], [6], the position of COM is

estimated by the forward kinematics computation on a robot

whole-body model with the mass properties. A technique to

identify the mass properties has also been developed[7]. This

approach is also used in human motion analysis[7], [8]. The

global positions and attitudes of each body segment can be

measured by cameras in the case of motion capturing, while

it is difficult for mobile robots. Two other options exist. Once

the net force applied to the robot is measured, it turns to the

acceleration of COM and the COM movement is estimated

by the double integral of it[9]. However, the accuracy is
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significantly degraded due to the error accumulation and

the initial error. Another scheme is to use the relationship

between COM and the center of pressure[4], [5], [10], [11],

[12] which is also abbreviated as the zero-moment point

(ZMP[13]). The behavior of ZMP resembles that of COM in

the low frequency domain. Moreover, it matches the ground

projection of COM at the stationary state, so that it is offset-

free. One drawback is that it lacks the information about the

vertical COM movement.

The goal of this paper is to present a novel technique

to improve the estimation accuracy of the COM motion.

The above three schemes, namely, the model-based forward

kinematics computation, the double integral of the net ex-

ternal force, and the relationship between COM and ZMP,

are integrated in a Kalman filter[14]. A position and attitude

estimation technique that the authors[15], [16] developed

enables the forward kinematics computation only from the

inertial sensors and joint angle encoders. The third scheme

of utilizing ZMP information is also improved, in which

not only the horizontal offset but also the vertical one is

compensated based on the interference of horizontal and

vertical components of the ground reaction torque.

II. THREE SCHEMES OF COM MOTION ESTIMATION :

REVIEW

In the previous works[4], [5], [6], [9], COM computation

based on the kinematic model is the most popular technique

as COM estimation. It needs not only the mass and COM

of each link with respect to the body frame Σ0 but also the

position and attitude of Σ0 with respect to the inertial frame

Σ as shown in Fig. 1, so that COM of the robot with respect

to Σ is computed as

pG =

∑nl

i=0
mipG,i

∑nl

i=0
mi

= p0 +R0

∑nl

i=0
mi

0pG,i
∑nl

i=0
mi

, (1)

where pG = [xG yG zG]
T is COM of the robot with respect

to Σ. mi is the mass of i-th link and nl is the total

number of links. pG,i and 0pG,i denote COM of i-th link

with respect to Σ and Σ0, respectively. p0 and R0 are the

position and attitude of Σ0 with respect to Σ, respectively. By

differentiating Eq. (1) by time, COM velocity with respect

to Σ is derived as

vG = v0 + ω0 ×R0

∑nl

i=0
mi

0pG,i
∑nl

i=0
mi

+R0

∑nl

i=0
mi

0vG,i
∑nl

i=0
mi

, (2)
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where v0 and ω0 are the velocity and angular velocity of Σ0

with respect to Σ, respectively. 0vG,i denotes COM velocity

of i-th link with respect to Σ0. From Eqs. (1) and (2), the

accuracy of pG and vG are deteriorated by the error included

in the mass property, p0, v0, R0 and ω0. The previous

works[7], [8] identified the mass properties based on the mo-

tion measurement and least square regression, but the error

of p0, v0, R0 and ω0 still remain. Under the assumption

that the mass property of the robot is known, Xinjilefu et

al.[5] proposed a Kalman filter based on the five-link model.

Benallegue et al.[17] proposed a Kalman filter taking the

flexibility of the supporting foot into consideration. Although

those assume that the supporting foot is fixed on the ground

during a step, the movement of the supporting foot can occur

due to the foot contact condition and the robot motion.

Another option to estimate COM is the double integral of

COM acceleration computed by the total external force act-

ing to the robot[9] as shown in Fig. 2. Let f = [fx fy fz]
T

be the total external force, the relationship between pG and

f is represented as

mp̈G = f −mg, (3)

where g = [0 0 g]T and g is the acceleration due to the

gravity. m is the total mass of the robot, which can be

measured by the ground reaction force at the stationary state,

and represented as m =
∑n

i=0
mi. Thus, COM and its

velocity are estimated as follows:

vG =

∫ t

0

(

f

m
− g

)

dτ + vG0, (4)

pG =

∫ t

0

(
∫ τ

0

(

f

m
− g

)

dT + vG0

)

dτ + pG0, (5)

where pG0 and vG0 are COM and its velocity with respect to

Σ at the initial time t = 0, respectively. However, f is usually

affected by the sensor noise, so that the error is accumulated

by the integration. Additionally, it is clear that the initial

errors included in pG0 and vG0 remains.

For those offset errors, it is reported that the idea based on

ZMP is effective to the reduction of the horizontal offset[11],

[12], [18], [4]. Benda et al.[11] and Caron et al.[12] estimated

COM by low-pass filtering ZMP since ZMP corresponds to

COM in the quasi-static state. However, it is only available

when COM moves slowly because of the low-pass filter

(LPF). Schepers et al.[18] enlarged the available situation

by combining low-pass filtered ZMP with high-pass filtered

COM computed by the double integral of COM acceleration.

However, the low frequency signal of the vertical position of

COM is approximated as the position of pelvis, so that the

estimated vertical COM has the offset error.

Another way to use ZMP is based on the idea that the

motion of the humanoid robot is regarded as that of the linear

inverted pendulum supported on ZMP[4], [5], [10] as shown

in Fig. 3. This model is derived by the balance of force

represented by Eq. (3) and that of moment represented as

(pG − pZ)× f +MG = MZ , (6)

MZ = [0 0 MZz]
T and MG = [MGx MGy MGz]

T are

the moment around ZMP and COM, respectively. pZ =
[xZ yZ zZ ]

T is ZMP with respect to Σ. Assume that all

external force and torque act to both feet and can be

measured, pZ and MZ satisfy the following relationship:

MZ =
∑ns

i=1
((psi − pZ)× fi + τi) , (7)

where ns is the total number of force sensors. fi =
[fxi fyi fzi]

T and τi = [τxi τyi τzi]
T are the force and

torque with respect to Σ measured at i-th force sensor’s

position psi = [xsi ysi zsi]
T, respectively. In the practical

measurement, i-th force sensor outputs 0fi and 0τi, which

are the force and torque with respect to Σ0, and those

coordinates are converted into Σ as

fi = R0
0fi, τi = R0

0τi. (8)

From the horizontal component of Eq. (7), ZMP is computed

as

xZ =

∑ns

i=1
(−τyi + xsifzi − (zsi − zZ)fxi)

∑ns

i=1
fzi

, (9)

yZ =

∑ns

i=1
(τxi + ysifzi − (zsi − zZ)fxi)

∑ns

i=1
fzi

, (10)

where zZ is usually determined arbitrarily. Assume that

MG ≃ 0, the motion equation of COM is represented as
[

ẍG

ÿG

]

=

[

ζ2 (xG − xZ)
ζ2 (yG − yZ)

]

, (11)
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where ζ =
√

(z̈G + g)/(zG − zZ). Hereafter, the relation-

ship between COM and ZMP in which MG is ignored is

called COM-ZMP model. Additionally, the estimation based

on the form as shown in Eq. (11) only dealt with the

horizontal motion.

In order to improve the accuracy of vertical COM, the

ankle joint based COM estimations were proposed[6], [19]

under the assumption that the supporting foot is fixed on the

ground during a step. By regarding the relationship between

COM and the ankle joint of the supporting foot as the flexible

inverted pendulum model, Kwon et al.[6] estimated COM

indirectly. Barbier et al.[19] computed COM based on the

inverted pendulum model supported on the ankle joint with a

constant length. Although those methods show that the idea

of the inverted pendulum is effective in the vertical COM

estimation, the assumption about the supporting foot is not

always satisfied.

III. COM ESTIMATION BY KALMAN FILTER FUSING THE

DYNAMICS AND KINEMATICS INFORMATION

Following the previous section, this paper aims to improve

the accuracy of three dimensional COM estimation of a

humanoid robot based on the inverted pendulum model. The

pendulum supported on the ankle joint has the limit about the

supporting foot, so that this paper considers the pendulum

supported on ZMP, namely, COM-ZMP model. Although one

method to use COM-ZMP model is to employ Eq. (11) as the

time evolution model, there is the problem that both side of

Eq. (11) has the second derivative of COM. Then, we focus

on COM-ZMP model without the derivative, namely, the

moment equilibrium represented as Eq. (6). By substituting

Eq. (7) to Eq. (6), the moment equilibrium is rewritten as

−[f×]pG = τZ −MG, (12)

where

τZ ≡
∑ns

i=1
(psi × fi + τi) , (13)

and [f×] is a skew-symmetric matrix which means the cross

product by f . As well as the previous works using ZMP[4],

[5], [10], this paper assumes that MG is negligible, so that

Eq. (12) is approximated as

−[f×]pG ≃ τZ . (14)

It is noticed that Eq. (14) no longer includes ZMP, but it is

a broad COM-ZMP model in the sense that MG is ignored.

Although Eq. (14) is an algebraic equation representing

COM-ZMP model unlike Eq. (11), its solution is non-

unique. One method to get the unique solution is to put the

assumption that the length of pendulum is constant as well

as Barbier et al.[19], but the assumption is not applicable to

even COM motion with the same height.

This paper resolves that problem by combining COM

from the kinematics computation, the external force and

COM-ZMP model based on Kalman filter. Fig. 4 shows the

overview of the proposed method. COM from the kinematics

computation is represented by only informations at the cur-

rent time, so that it is used as a part of the observation equa-

tion. COM-ZMP model represented by Eq. (12) also uses

only the current force and torque, so that this paper employs

the model as the part of the observation equation though

the coefficient matrix includes the noise. On the other hand,

since the double integral of COM acceleration is derived

from a differential equation represented by Eq. (3), COM

from the external force is suitable for a state equation. Thus,

the state and observe equation for the proposed Kalman filter

is represented as

ẋ =

[

O 1

O O

]

x+

[

0

f̃
m

− g

]

+ws, (15)

y =





1 O

O 1

−[f̃×] O



x+wo, (16)

where x = [pT
G vT

G]
T is the state vector. y = [p̃T

G ṽT
G τ̃T

Z ]T

is the measurement vector and ∗̃ means the measurement of



the variable ∗. O,1 ∈ R
3×3 and 0 ∈ R

3 are the zero matrix,

the identity matrix and the zero vector, respectively. In the

actual estimation, it is also necessary to estimate p0, v0, R0

and ω0 for the kinematics computation and the coordinate

transformation, so that they are assumed to be obtained by

the attitude estimator[15] and the position estimator[16] in

advance.

IV. EVALUATION THROUGH THE SIMULATION

A. Discretization of Kalman filter for the implementation

It is necessary to discretize the proposed Kalman filter in

order to implement it. The forward finite-difference approx-

imation is employed due to its simplicity, thus the proposed

filter is discretized as

xk+1 = Axk + uk +wsk∆T, (17)

yk = Ckxk +wok, (18)

A =

[

1 ∆T1
O 1

]

, uk =

[

0

∆T
(

f̃k

m
− g

)

]

,

Ck =





1 O

O 1

−[f̃k×] O



 .

∆T is the sampling time and the subscript k means the

index of the discrete time k∆T . Therefore, the algorithm

of measurement update is written as

Kk = Pk|k−1C
T
k

(

CkPk|k−1C
T
k +Qo

)−1
, (19)

x̂k|k = x̂k|k−1 +Kk

(

yk −Ckx̂k|k−1

)

, (20)

Pk|k = Pk|k−1 −KkCkPk|k−1, (21)

where x̂k|k and x̂k|k−1 mean the estimates of xk from the

information until k∆T and (k − 1)∆T , respectively. Pk|k

and Pk|k−1 are the error covariance matrices of x̂k|k and

x̂k|k−1, respectively. Qo is the covariance matrix of wo. On

the other hand, the algorithm of time update is written as

x̂k+1|k = Ax̂k|k + uk, (22)

Pk+1|k = APk|kA
T +Qs, (23)

where Qs is the covariance matrix of ws∆T .

B. Set up

In order to evaluate the validity of the proposed method,

the dynamic simulation was executed on OpenHRP3[21]. In

the simulation, a humanoid robot named ”mighty” [20] was

supposed as the robot model. Each foot of the robot has 4

force sensors on its sole. PD controller was employed to eval-

uate only the estimation performance and used the references

of joint angles and those differential which are computed

by Sugihara’s method[22] in advance. We considered the

walking motion which stride length and walking cycle were

set to 0.08[m] and 1[s], respectively. In the motion, the robot

first stop until 2[s], then walks forward. Snapshots of the

motion are shown in Fig. 5. We set the forward, leftward and

vertical direction at the initial time as x, y and z direction,

respectively.

In order to imitate the sensor noise, following noises were

input to the true values in the estimation.

wf ∼ N (µf , diag{0.17
2, 0.172, 0.342}),

µf ∼ N (0, diag{0.52, 0.52, 1.02}), (24)

wτ ∼ N (µτ , 0.0034
2
1), µτ ∼ N (0, 0.0121), (25)

where wf [N] and wτ [Nm] are the noise adding to the

force and torque, respectively. µf [N] and µτ [Nm] mean

the offset of the measured force and torque, respectively.

N (µ,Σ) means the normal distribution with the mean µ and

the covariance matrix Σ. diag{d1, · · · , dn} is the diagonal

matrix which components are d1, · · · , dn. Third covariance

of wf was determined so that three times values of it is equal

to a 2[%] weight. First and second element are set to be a half

of third element. The covariance of wτ is also determined

based on that third element. The covariances of µf and µτ

were determined so that those values are about three times

values of the covariance of wf and wτ , respectively. µf and

µτ were initialized at the beginning of the simulation. Next,

in order to take differences between the mass properties of

the modeled and real robot into consideration, the following

erroneous mass properties are employed in the estimation.

m̃i = (1 + wm)mi, wm ∼ N (0, 0.2), (26)

p̃Gi = (1 + wG)pGi, wG ∼ N (0, 0.3), (27)

where m̃i and p̃Gi are the erroneous mass and COM of i-th
link, respectively. It is noticed that references given to con-

troller are computed based on this erroneous mass properties.

Additionally, noise of the rate gyro, the accelerometer and

the magnetometer, which are used for the attitude estimator

and the position estimator, were added to the ground truth

of the angular velocity, acceleration and magnetism. Those

noises are represented as follow:

wω ∼ N (µω, 0.03
2
1), µω ∼ N (0, 0.0321) (28)

wa ∼ N (µa, 0.04
2
1), µa ∼ N (0, 0.0121) (29)

wn ∼ N (0, 0.01321), (30)

where wω [rad/s], wa [m/s2] are the noise of the rate gyro

and the accelerometer, respectively. wn is the noise added

to the unit vector corresponding to the direction of the

true output of the magnetometer. µω[rad/s] and µa[m/s2]

are the offset bias of the rate gyro and the accelerometer,

respectively. Those offsets are initialized at the beginning of

each simulation.

In the simulation, the following methods were compared:

• Kinematics computation with fixed supporting foot

based dead reckoning (KC)

• Kinematics computation with the position estimator

(KC+Pos.Est.)

• Kalman filter without COM-ZMP model (KF wo.

COM-ZMP)

• The proposed Kalman filter (PKF)

In order to verify that the effect of the accuracy of p0

to COM estimation, we considered KC. The position and

velocity of Σ0 were estimated by the position estimator[16]
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Fig. 7. An error result of COM position estimation

except for KC. Also, in all methods, the attitude information

was estimated by the author’s previous work[15]. Parameters

for PKF were determined based on the error property of the

force sensor and the mass property. Parameters of KF wo.

COM-ZMP are the same as the corresponding parameter of

PKF.

C. Simulation result

A result of estimation and its error result are plotted in

Figs. 6 and 7, respectively. The mean of the absolute value of

mean error (MAME) and the root-mean square error (RMSE)

of the estimated COM position for 10 noise patterns are

shown in Table I. MAME is used to evaluate the mean error

for the whole simulation and is computed as

MAME(eG) =
1

10

∑10

i=0

∣

∣

∣

∣

1

N

∑N

k=1
eG,i,k

∣

∣

∣

∣

, (31)

where eG,i,k is the error of COM at k∆T in i-th error

pattern. N is the total number of steps in a simulation. On

the other hand, RMSE is employed to evaluate the total error

including both the mean and variance of the error and is
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TABLE I

THE ESTIMATION ERROR

MAME [×10
−3m] RMSE [×10

−3m]
x y z x y z

KC 86.8 19.0 25.7 97.7 22.7 30.4

KC+Pos. Est. 4.61 7.37 14.6 7.86 10.3 19.8

KF wo. COM-ZMP 5.08 6.79 14.2 8.66 9.85 18.6

PKF 5.56 6.49 10.3 9.35 9.57 12.6

computed as

RMSE(eG) =

√

1

10

∑10

i=0

(

1

N

∑N

k=1
e2G,i,k

)

. (32)

The comparison KC with others shows that the error of the

global position is dominant for COM estimation, particularly,

in x direction. Compared with KC+Pos.Est., the proposed

method and KF wo. COM-ZMP can reduce both MAME

and RMSE in y direction, but those in x direction increase.

This is because of the noise of the force sensor. Focusing

on the result of z direction, the proposed method is the

best estimation. Compared with KC+Pos.Est., the proposed

method shows about 30[%] reduction in MAME and about

35[%] reduction in RMSE. This reduction makes the error

norm of PKF smaller as shown in Fig. 8. Thus, PKF can

improve the estimation accuracy in z direction.

V. CONCLUSION

This paper proposes a novel Kalman filter to estimate

COM motion of a humanoid robot. It combines COM

from the kinematic model, the external force and a broad

COM-ZMP model. In order to reduce the vertical offset,

the filter uses the interference between the horizontal and

vertical component caused by COM-ZMP model. Through

the simulation in which the robot walks on the plane, it is

ensured that the proposed method can reduce the offset error

in COM position estimation.
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